对称-α-稳定过程的可压缩性

J. P. Ward, J. Fageot, M. Unser
{"title":"对称-α-稳定过程的可压缩性","authors":"J. P. Ward, J. Fageot, M. Unser","doi":"10.1109/SAMPTA.2015.7148887","DOIUrl":null,"url":null,"abstract":"Within a deterministic framework, it is well known that n-term wavelet approximation rates of functions can be deduced from their Besov regularity. We use this principle to determine approximation rates for symmetric-α-stable (SαS) stochastic processes. First, we characterize the Besov regularity of SαS processes. Then the n-term approximation rates follow. To capture the local smoothness behavior, we consider sparse processes defined on the circle that are solutions of stochastic differential equations.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Compressibility of symmetric-α-stable processes\",\"authors\":\"J. P. Ward, J. Fageot, M. Unser\",\"doi\":\"10.1109/SAMPTA.2015.7148887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within a deterministic framework, it is well known that n-term wavelet approximation rates of functions can be deduced from their Besov regularity. We use this principle to determine approximation rates for symmetric-α-stable (SαS) stochastic processes. First, we characterize the Besov regularity of SαS processes. Then the n-term approximation rates follow. To capture the local smoothness behavior, we consider sparse processes defined on the circle that are solutions of stochastic differential equations.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在确定性框架内,众所周知,函数的n项小波近似率可以从它们的贝索夫正则性中推导出来。我们用这个原理来确定对称α-稳定(s -α s)随机过程的近似率。首先,我们描述了s - α s过程的Besov正则性。然后是n项近似速率。为了捕捉局部光滑性,我们考虑定义在圆上的稀疏过程,它们是随机微分方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressibility of symmetric-α-stable processes
Within a deterministic framework, it is well known that n-term wavelet approximation rates of functions can be deduced from their Besov regularity. We use this principle to determine approximation rates for symmetric-α-stable (SαS) stochastic processes. First, we characterize the Besov regularity of SαS processes. Then the n-term approximation rates follow. To capture the local smoothness behavior, we consider sparse processes defined on the circle that are solutions of stochastic differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信