{"title":"对称-α-稳定过程的可压缩性","authors":"J. P. Ward, J. Fageot, M. Unser","doi":"10.1109/SAMPTA.2015.7148887","DOIUrl":null,"url":null,"abstract":"Within a deterministic framework, it is well known that n-term wavelet approximation rates of functions can be deduced from their Besov regularity. We use this principle to determine approximation rates for symmetric-α-stable (SαS) stochastic processes. First, we characterize the Besov regularity of SαS processes. Then the n-term approximation rates follow. To capture the local smoothness behavior, we consider sparse processes defined on the circle that are solutions of stochastic differential equations.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Compressibility of symmetric-α-stable processes\",\"authors\":\"J. P. Ward, J. Fageot, M. Unser\",\"doi\":\"10.1109/SAMPTA.2015.7148887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within a deterministic framework, it is well known that n-term wavelet approximation rates of functions can be deduced from their Besov regularity. We use this principle to determine approximation rates for symmetric-α-stable (SαS) stochastic processes. First, we characterize the Besov regularity of SαS processes. Then the n-term approximation rates follow. To capture the local smoothness behavior, we consider sparse processes defined on the circle that are solutions of stochastic differential equations.\",\"PeriodicalId\":311830,\"journal\":{\"name\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Sampling Theory and Applications (SampTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMPTA.2015.7148887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Within a deterministic framework, it is well known that n-term wavelet approximation rates of functions can be deduced from their Besov regularity. We use this principle to determine approximation rates for symmetric-α-stable (SαS) stochastic processes. First, we characterize the Besov regularity of SαS processes. Then the n-term approximation rates follow. To capture the local smoothness behavior, we consider sparse processes defined on the circle that are solutions of stochastic differential equations.