一种半监督欺骗干扰判别方法

Hongliang Luo, Jieyi Liu, Siyuan Wu, Zhao Nie, Hao Li, Jie Wu
{"title":"一种半监督欺骗干扰判别方法","authors":"Hongliang Luo, Jieyi Liu, Siyuan Wu, Zhao Nie, Hao Li, Jie Wu","doi":"10.1109/CCIS53392.2021.9754679","DOIUrl":null,"url":null,"abstract":"For anti-deception jamming discrimination on multistatic radar system, the existing anti-jamming methods based on artificial intelligence require enough training samples with a large amount of labeled data, but it is difficult to obtain lots of labeled radar echo data in reality combat environment. This paper proposes a convolutional deep belief network-based deception jamming discrimination method for the insufficient labeled data. The constructed anti-jamming network is trained with a large number of unlabeled radar echo data, and enhances the discriminating capability of the network with a small number of labeled echo data. It realizes a more accurate deception jamming discrimination network, which achieves full information utilization and broadens the limitation condition of jamming discrimination. Simulation results show that compared with the existing artificial intelligence-based jamming discrimination method utilizing tens of thousands of labeled data, the proposed method satisfies the same performance utilizing 2000 labeled data. It reduces data requirements and enhances operational capabilities.","PeriodicalId":191226,"journal":{"name":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Semi-Supervised Deception Jamming Discrimination Method\",\"authors\":\"Hongliang Luo, Jieyi Liu, Siyuan Wu, Zhao Nie, Hao Li, Jie Wu\",\"doi\":\"10.1109/CCIS53392.2021.9754679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For anti-deception jamming discrimination on multistatic radar system, the existing anti-jamming methods based on artificial intelligence require enough training samples with a large amount of labeled data, but it is difficult to obtain lots of labeled radar echo data in reality combat environment. This paper proposes a convolutional deep belief network-based deception jamming discrimination method for the insufficient labeled data. The constructed anti-jamming network is trained with a large number of unlabeled radar echo data, and enhances the discriminating capability of the network with a small number of labeled echo data. It realizes a more accurate deception jamming discrimination network, which achieves full information utilization and broadens the limitation condition of jamming discrimination. Simulation results show that compared with the existing artificial intelligence-based jamming discrimination method utilizing tens of thousands of labeled data, the proposed method satisfies the same performance utilizing 2000 labeled data. It reduces data requirements and enhances operational capabilities.\",\"PeriodicalId\":191226,\"journal\":{\"name\":\"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIS53392.2021.9754679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIS53392.2021.9754679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于多基地雷达系统的防欺骗干扰判别,现有的基于人工智能的抗干扰方法需要足够的训练样本和大量的标记数据,但在实际作战环境中难以获得大量的标记雷达回波数据。针对标记数据不足的情况,提出了一种基于卷积深度信念网络的欺骗干扰判别方法。构建的抗干扰网络使用大量未标记的雷达回波数据进行训练,并使用少量标记的回波数据增强网络的识别能力。实现了更精确的欺骗干扰识别网络,实现了信息的充分利用,拓宽了干扰识别的限制条件。仿真结果表明,与现有基于人工智能的基于数万个标记数据的干扰识别方法相比,该方法在使用2000个标记数据时能够满足相同的性能。它减少了数据需求,增强了操作能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Semi-Supervised Deception Jamming Discrimination Method
For anti-deception jamming discrimination on multistatic radar system, the existing anti-jamming methods based on artificial intelligence require enough training samples with a large amount of labeled data, but it is difficult to obtain lots of labeled radar echo data in reality combat environment. This paper proposes a convolutional deep belief network-based deception jamming discrimination method for the insufficient labeled data. The constructed anti-jamming network is trained with a large number of unlabeled radar echo data, and enhances the discriminating capability of the network with a small number of labeled echo data. It realizes a more accurate deception jamming discrimination network, which achieves full information utilization and broadens the limitation condition of jamming discrimination. Simulation results show that compared with the existing artificial intelligence-based jamming discrimination method utilizing tens of thousands of labeled data, the proposed method satisfies the same performance utilizing 2000 labeled data. It reduces data requirements and enhances operational capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信