Xinmin Li, Jiahui Li, B. Yin, Jiaxin Yan, Yuan Fang
{"title":"基于深度强化学习的无人机智能交通系统信息优化时代","authors":"Xinmin Li, Jiahui Li, B. Yin, Jiaxin Yan, Yuan Fang","doi":"10.1109/VTC2022-Fall57202.2022.10012697","DOIUrl":null,"url":null,"abstract":"In this work, we investigate an uplink unmanned aerial vehicles (UAVs)-enabled intelligent transportation system to collect data from traveling vehicles on a specific highway road. To ensure the freshness of information delivered from the traveling vehicles to UAV base stations, we use the new age of information (AoI) metric to characterize the information freshness and formulate the AoI minimization problem by optimizing the UAVs’ trajectories and the communication time of vehicles jointly. In order to handle the mixed-integer nonlinear problem, a multi-agent deep reinforcement learning scheme is proposed by applying independent flight direction and time slot action spaces, in which each UAV working as an independent agent adjusts to the dynamic environment quickly based on stored experience. The AoI-related reward function is proposed to select the beneficial action space to guarantee the information freshness. Numerical simulation results show the proposed scheme outperforms the benchmark schemes.","PeriodicalId":326047,"journal":{"name":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Age of Information Optimization in UAV-enabled Intelligent Transportation System via Deep Reinforcement Learning\",\"authors\":\"Xinmin Li, Jiahui Li, B. Yin, Jiaxin Yan, Yuan Fang\",\"doi\":\"10.1109/VTC2022-Fall57202.2022.10012697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we investigate an uplink unmanned aerial vehicles (UAVs)-enabled intelligent transportation system to collect data from traveling vehicles on a specific highway road. To ensure the freshness of information delivered from the traveling vehicles to UAV base stations, we use the new age of information (AoI) metric to characterize the information freshness and formulate the AoI minimization problem by optimizing the UAVs’ trajectories and the communication time of vehicles jointly. In order to handle the mixed-integer nonlinear problem, a multi-agent deep reinforcement learning scheme is proposed by applying independent flight direction and time slot action spaces, in which each UAV working as an independent agent adjusts to the dynamic environment quickly based on stored experience. The AoI-related reward function is proposed to select the beneficial action space to guarantee the information freshness. Numerical simulation results show the proposed scheme outperforms the benchmark schemes.\",\"PeriodicalId\":326047,\"journal\":{\"name\":\"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)\",\"volume\":\"93 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTC2022-Fall57202.2022.10012697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2022-Fall57202.2022.10012697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Age of Information Optimization in UAV-enabled Intelligent Transportation System via Deep Reinforcement Learning
In this work, we investigate an uplink unmanned aerial vehicles (UAVs)-enabled intelligent transportation system to collect data from traveling vehicles on a specific highway road. To ensure the freshness of information delivered from the traveling vehicles to UAV base stations, we use the new age of information (AoI) metric to characterize the information freshness and formulate the AoI minimization problem by optimizing the UAVs’ trajectories and the communication time of vehicles jointly. In order to handle the mixed-integer nonlinear problem, a multi-agent deep reinforcement learning scheme is proposed by applying independent flight direction and time slot action spaces, in which each UAV working as an independent agent adjusts to the dynamic environment quickly based on stored experience. The AoI-related reward function is proposed to select the beneficial action space to guarantee the information freshness. Numerical simulation results show the proposed scheme outperforms the benchmark schemes.