Fraser Williams, D. Jayalath, Anju Jose Tom, Terrence Martin, C. Fookes
{"title":"直接定位中利用接收信号强度集成提高发射机定位精度","authors":"Fraser Williams, D. Jayalath, Anju Jose Tom, Terrence Martin, C. Fookes","doi":"10.1109/SSP53291.2023.10208001","DOIUrl":null,"url":null,"abstract":"Radio emitter localization methods have traditionally incorporated many sources of information such as time difference of arrival (TDOA), angle of arrival (AOA), and received signal strength (RSS) into a two-step position estimation model. Modern direct position determination (DPD) methods have since superseded the performance of two-step methods in low signal-to-noise ratio (SNR) environments. However, the current DPD literature has neglected the use of RSS information to enhance localization accuracy, despite its prevalence in predecessor two-step methods. As signal strength information is always present at receiver nodes, regardless of operating hardware, this information could be used to better estimate emitter position. We propose an RSS method as applied to spatially distributed receiver arrays incorporating beamforming. Monte Carlo simulations show improved accuracy at medium to high SNR as compared to methods exploiting only time and angle information, while having reduced performance at very low SNR.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Emitter Localization Accuracy Through Integration of Received Signal Strength in Direct Position Determination\",\"authors\":\"Fraser Williams, D. Jayalath, Anju Jose Tom, Terrence Martin, C. Fookes\",\"doi\":\"10.1109/SSP53291.2023.10208001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radio emitter localization methods have traditionally incorporated many sources of information such as time difference of arrival (TDOA), angle of arrival (AOA), and received signal strength (RSS) into a two-step position estimation model. Modern direct position determination (DPD) methods have since superseded the performance of two-step methods in low signal-to-noise ratio (SNR) environments. However, the current DPD literature has neglected the use of RSS information to enhance localization accuracy, despite its prevalence in predecessor two-step methods. As signal strength information is always present at receiver nodes, regardless of operating hardware, this information could be used to better estimate emitter position. We propose an RSS method as applied to spatially distributed receiver arrays incorporating beamforming. Monte Carlo simulations show improved accuracy at medium to high SNR as compared to methods exploiting only time and angle information, while having reduced performance at very low SNR.\",\"PeriodicalId\":296346,\"journal\":{\"name\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP53291.2023.10208001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10208001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Emitter Localization Accuracy Through Integration of Received Signal Strength in Direct Position Determination
Radio emitter localization methods have traditionally incorporated many sources of information such as time difference of arrival (TDOA), angle of arrival (AOA), and received signal strength (RSS) into a two-step position estimation model. Modern direct position determination (DPD) methods have since superseded the performance of two-step methods in low signal-to-noise ratio (SNR) environments. However, the current DPD literature has neglected the use of RSS information to enhance localization accuracy, despite its prevalence in predecessor two-step methods. As signal strength information is always present at receiver nodes, regardless of operating hardware, this information could be used to better estimate emitter position. We propose an RSS method as applied to spatially distributed receiver arrays incorporating beamforming. Monte Carlo simulations show improved accuracy at medium to high SNR as compared to methods exploiting only time and angle information, while having reduced performance at very low SNR.