{"title":"骨髓增生异常综合征:病理生理学和治疗的最新进展","authors":"W. Chai-Ho, G. Schiller","doi":"10.5772/INTECHOPEN.82166","DOIUrl":null,"url":null,"abstract":"Myelodysplastic syndromes (MDS) comprise a set of clonal hematopoietic stem cell (HSC) disorders characterized by ineffective hematopoiesis that manifest as cytopenia of variable severity. The result often is an increased risk of infection, transfusion dependence, and a potential to transform to acute myeloid leukemia (AML). For the past decade, hypomethylating agents remain the only FDA-approved therapy. Given that MDS is more prevalent in the elderly who often have comorbid conditions, supportive care remains the mainstay of therapy. Curative treatments are restricted to younger, healthy individuals with histocompatible-matched donors for allogeneic transplant able to tolerate more intensive chemotherapeutic treatment. Understanding of the pathophysiology of MDS advanced over the past decade, which leads to an increasing array of new agents under clinical investigation. This review focuses on our recent enhanced understanding of MDS molecular biology, and promising novel agents that go beyond the hypomethylating agent.","PeriodicalId":405900,"journal":{"name":"Recent Developments in Myelodysplastic Syndromes","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Myelodysplastic Syndromes: An Update on Pathophysiology and Management\",\"authors\":\"W. Chai-Ho, G. Schiller\",\"doi\":\"10.5772/INTECHOPEN.82166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Myelodysplastic syndromes (MDS) comprise a set of clonal hematopoietic stem cell (HSC) disorders characterized by ineffective hematopoiesis that manifest as cytopenia of variable severity. The result often is an increased risk of infection, transfusion dependence, and a potential to transform to acute myeloid leukemia (AML). For the past decade, hypomethylating agents remain the only FDA-approved therapy. Given that MDS is more prevalent in the elderly who often have comorbid conditions, supportive care remains the mainstay of therapy. Curative treatments are restricted to younger, healthy individuals with histocompatible-matched donors for allogeneic transplant able to tolerate more intensive chemotherapeutic treatment. Understanding of the pathophysiology of MDS advanced over the past decade, which leads to an increasing array of new agents under clinical investigation. This review focuses on our recent enhanced understanding of MDS molecular biology, and promising novel agents that go beyond the hypomethylating agent.\",\"PeriodicalId\":405900,\"journal\":{\"name\":\"Recent Developments in Myelodysplastic Syndromes\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Developments in Myelodysplastic Syndromes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.82166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Developments in Myelodysplastic Syndromes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.82166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Myelodysplastic Syndromes: An Update on Pathophysiology and Management
Myelodysplastic syndromes (MDS) comprise a set of clonal hematopoietic stem cell (HSC) disorders characterized by ineffective hematopoiesis that manifest as cytopenia of variable severity. The result often is an increased risk of infection, transfusion dependence, and a potential to transform to acute myeloid leukemia (AML). For the past decade, hypomethylating agents remain the only FDA-approved therapy. Given that MDS is more prevalent in the elderly who often have comorbid conditions, supportive care remains the mainstay of therapy. Curative treatments are restricted to younger, healthy individuals with histocompatible-matched donors for allogeneic transplant able to tolerate more intensive chemotherapeutic treatment. Understanding of the pathophysiology of MDS advanced over the past decade, which leads to an increasing array of new agents under clinical investigation. This review focuses on our recent enhanced understanding of MDS molecular biology, and promising novel agents that go beyond the hypomethylating agent.