用于在伽罗瓦域上执行ICA的MEXICO算法的修改版本

D. G. Silva, Everton Z. Nadalin, R. Attux, J. Filho
{"title":"用于在伽罗瓦域上执行ICA的MEXICO算法的修改版本","authors":"D. G. Silva, Everton Z. Nadalin, R. Attux, J. Filho","doi":"10.1109/MLSP.2012.6349741","DOIUrl":null,"url":null,"abstract":"The theory of ICA over finite fields, established in the last five years, gave rise to a corpus of different separation strategies, which includes an algorithm based on the pairwise comparison of mixtures, called MEXICO. In this work, we propose an alternative version of the MEXICO algorithm, with modifications that - as shown by the results obtained for a number of representative scenarios - lead to performance improvements in terms of the computational effort required to reach a certain performance level, especially for an elevated number of sources. This parsimony can be relevant to enhance the applicability of the new ICA theory to data mining in the context of large discrete-valued databases.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A modified version of the MEXICO algorithm for performing ICA over Galois fields\",\"authors\":\"D. G. Silva, Everton Z. Nadalin, R. Attux, J. Filho\",\"doi\":\"10.1109/MLSP.2012.6349741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theory of ICA over finite fields, established in the last five years, gave rise to a corpus of different separation strategies, which includes an algorithm based on the pairwise comparison of mixtures, called MEXICO. In this work, we propose an alternative version of the MEXICO algorithm, with modifications that - as shown by the results obtained for a number of representative scenarios - lead to performance improvements in terms of the computational effort required to reach a certain performance level, especially for an elevated number of sources. This parsimony can be relevant to enhance the applicability of the new ICA theory to data mining in the context of large discrete-valued databases.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在过去五年中建立的有限域上的ICA理论产生了一系列不同的分离策略,其中包括一种基于混合物成对比较的算法,称为MEXICO。在这项工作中,我们提出了墨西哥算法的替代版本,并进行了一些修改,如在许多代表性场景中获得的结果所示,这些修改在达到一定性能水平所需的计算工作量方面导致性能改进,特别是对于数量增加的源。这种简洁性有助于提高新的ICA理论在大型离散值数据库的数据挖掘中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A modified version of the MEXICO algorithm for performing ICA over Galois fields
The theory of ICA over finite fields, established in the last five years, gave rise to a corpus of different separation strategies, which includes an algorithm based on the pairwise comparison of mixtures, called MEXICO. In this work, we propose an alternative version of the MEXICO algorithm, with modifications that - as shown by the results obtained for a number of representative scenarios - lead to performance improvements in terms of the computational effort required to reach a certain performance level, especially for an elevated number of sources. This parsimony can be relevant to enhance the applicability of the new ICA theory to data mining in the context of large discrete-valued databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信