M. López-Guerrero, J. Gallardo, D. Makrakis, L. Orozco-Barbosa
{"title":"网络流量预测算法的灵敏度","authors":"M. López-Guerrero, J. Gallardo, D. Makrakis, L. Orozco-Barbosa","doi":"10.1109/PACRIM.2001.953708","DOIUrl":null,"url":null,"abstract":"A traffic prediction algorithm is evaluated. It assumes that network traffic is realistically modeled using alpha-stable long-range dependent stochastic processes. This work analyzes the sensitivity of the prediction algorithm with respect to inaccuracies introduced when extracting the model parameters.","PeriodicalId":261724,"journal":{"name":"2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (IEEE Cat. No.01CH37233)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Sensitivity of a network traffic prediction algorithm\",\"authors\":\"M. López-Guerrero, J. Gallardo, D. Makrakis, L. Orozco-Barbosa\",\"doi\":\"10.1109/PACRIM.2001.953708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A traffic prediction algorithm is evaluated. It assumes that network traffic is realistically modeled using alpha-stable long-range dependent stochastic processes. This work analyzes the sensitivity of the prediction algorithm with respect to inaccuracies introduced when extracting the model parameters.\",\"PeriodicalId\":261724,\"journal\":{\"name\":\"2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (IEEE Cat. No.01CH37233)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (IEEE Cat. No.01CH37233)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACRIM.2001.953708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (IEEE Cat. No.01CH37233)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.2001.953708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sensitivity of a network traffic prediction algorithm
A traffic prediction algorithm is evaluated. It assumes that network traffic is realistically modeled using alpha-stable long-range dependent stochastic processes. This work analyzes the sensitivity of the prediction algorithm with respect to inaccuracies introduced when extracting the model parameters.