ACI 440.1R-06间接偏转控制设计规定的基本原理

C. E. Ospina, S. Gross
{"title":"ACI 440.1R-06间接偏转控制设计规定的基本原理","authors":"C. E. Ospina, S. Gross","doi":"10.14359/14859","DOIUrl":null,"url":null,"abstract":"Synopsis: Compared to ordinary steel reinforcement, Fiber-Reinforced Polymer (FRP) reinforcing bars have a lower stiffness, display a brittle-elastic response, and possess particular bond characteristics. The dependence on these distinctive features makes deflection control in FRP-reinforced concrete beams and one-way slabs a more elaborate process compared to the traditional serviceability design of steel-reinforced members. This paper reports the rationale and fundamental concepts backing the indirect deflection control procedure for concrete beams and one-way slabs reinforced with FRP bars adopted by ACI 440.1R-06. The fundamental procedure can be applied regardless of the type of reinforcement; it is independent of the member’s stiffness through the cracked stage; and it is expressed as a function of the deflection-span ratio, which allows designers to fully control deflections depending on applicable serviceability limits. The paper also explains the simplifications made to the fundamental procedure that led to the development of the indirect deflection control procedure in tabular form found in ACI 440.1R-06, including the method by which tension stiffening effects are accounted for.","PeriodicalId":151616,"journal":{"name":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Rationale for the ACI 440.1R-06 Indirect Deflection Control Design Provisions\",\"authors\":\"C. E. Ospina, S. Gross\",\"doi\":\"10.14359/14859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synopsis: Compared to ordinary steel reinforcement, Fiber-Reinforced Polymer (FRP) reinforcing bars have a lower stiffness, display a brittle-elastic response, and possess particular bond characteristics. The dependence on these distinctive features makes deflection control in FRP-reinforced concrete beams and one-way slabs a more elaborate process compared to the traditional serviceability design of steel-reinforced members. This paper reports the rationale and fundamental concepts backing the indirect deflection control procedure for concrete beams and one-way slabs reinforced with FRP bars adopted by ACI 440.1R-06. The fundamental procedure can be applied regardless of the type of reinforcement; it is independent of the member’s stiffness through the cracked stage; and it is expressed as a function of the deflection-span ratio, which allows designers to fully control deflections depending on applicable serviceability limits. The paper also explains the simplifications made to the fundamental procedure that led to the development of the indirect deflection control procedure in tabular form found in ACI 440.1R-06, including the method by which tension stiffening effects are accounted for.\",\"PeriodicalId\":151616,\"journal\":{\"name\":\"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14359/14859\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/14859","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

简介:与普通钢筋相比,FRP (Fiber-Reinforced Polymer,纤维增强聚合物)钢筋具有较低的刚度,具有脆性-弹性响应,并具有特殊的粘结特性。依赖于这些独特的特征使得frp钢筋混凝土梁和单向板的挠度控制比传统的钢筋构件的使用能力设计更复杂。本文报道了ACI 440.1R-06采用的FRP筋混凝土梁和单向板间接挠度控制程序的基本原理和基本概念。无论加固类型如何,基本程序都可以应用;开裂阶段与构件刚度无关;它被表示为挠度-跨度比的函数,这使得设计人员可以根据适用的使用极限完全控制挠度。本文还解释了对导致ACI 440.1R-06表格形式间接挠度控制程序发展的基本程序的简化,包括考虑张力加劲效应的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rationale for the ACI 440.1R-06 Indirect Deflection Control Design Provisions
Synopsis: Compared to ordinary steel reinforcement, Fiber-Reinforced Polymer (FRP) reinforcing bars have a lower stiffness, display a brittle-elastic response, and possess particular bond characteristics. The dependence on these distinctive features makes deflection control in FRP-reinforced concrete beams and one-way slabs a more elaborate process compared to the traditional serviceability design of steel-reinforced members. This paper reports the rationale and fundamental concepts backing the indirect deflection control procedure for concrete beams and one-way slabs reinforced with FRP bars adopted by ACI 440.1R-06. The fundamental procedure can be applied regardless of the type of reinforcement; it is independent of the member’s stiffness through the cracked stage; and it is expressed as a function of the deflection-span ratio, which allows designers to fully control deflections depending on applicable serviceability limits. The paper also explains the simplifications made to the fundamental procedure that led to the development of the indirect deflection control procedure in tabular form found in ACI 440.1R-06, including the method by which tension stiffening effects are accounted for.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信