基于截断总变分法的单雾图像去雾

Yin Gao, Yijing Su, Jun Li
{"title":"基于截断总变分法的单雾图像去雾","authors":"Yin Gao, Yijing Su, Jun Li","doi":"10.1145/3421766.3421772","DOIUrl":null,"url":null,"abstract":"Existing dehazing methods are usually to appear visual problems. In the paper, we put forward a truncated total variation method (TTV) to eliminate haze. A histogram analysis is firstly developed to obtain global atmospheric light. Then, using an adaptive boundary constraint TTV to optimize the transmission properly. Finally, a new DCP is presented to remove haze. Shown in experimental results, our method can outperform existent methods on the visual effect.","PeriodicalId":360184,"journal":{"name":"Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single Fog Image Dehazing via Truncated Total Variation Method\",\"authors\":\"Yin Gao, Yijing Su, Jun Li\",\"doi\":\"10.1145/3421766.3421772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing dehazing methods are usually to appear visual problems. In the paper, we put forward a truncated total variation method (TTV) to eliminate haze. A histogram analysis is firstly developed to obtain global atmospheric light. Then, using an adaptive boundary constraint TTV to optimize the transmission properly. Finally, a new DCP is presented to remove haze. Shown in experimental results, our method can outperform existent methods on the visual effect.\",\"PeriodicalId\":360184,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3421766.3421772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Artificial Intelligence and Advanced Manufacture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3421766.3421772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的除雾方法通常会出现视觉问题。本文提出了一种截断总变分法(TTV)来消除雾霾。首先提出了一种直方图分析方法来获取全球大气光。然后,利用自适应边界约束TTV对传输进行优化。最后,提出了一种新的DCP来去除雾霾。实验结果表明,我们的方法在视觉效果上优于现有的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Single Fog Image Dehazing via Truncated Total Variation Method
Existing dehazing methods are usually to appear visual problems. In the paper, we put forward a truncated total variation method (TTV) to eliminate haze. A histogram analysis is firstly developed to obtain global atmospheric light. Then, using an adaptive boundary constraint TTV to optimize the transmission properly. Finally, a new DCP is presented to remove haze. Shown in experimental results, our method can outperform existent methods on the visual effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信