利用人工神经网络预测太阳辐射的研究进展

M. Marzouq, Hakim El Fadili, Z. Lakhliai, Khalid Zenkouar
{"title":"利用人工神经网络预测太阳辐射的研究进展","authors":"M. Marzouq, Hakim El Fadili, Z. Lakhliai, Khalid Zenkouar","doi":"10.1109/WITS.2017.7934658","DOIUrl":null,"url":null,"abstract":"Prediction of solar radiation plays an important role in different energy systems. The aim of this paper is twofold: firstly, we provide an updated review of solar radiation prediction models using ANN's, based on 32 retained papers, by specifying the prediction horizon, ANN architecture and the corresponding obtained performance indicators. Secondly, research limitations are carried out followed by proposed recommendations and perspectives for future investigations.","PeriodicalId":147797,"journal":{"name":"2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A review of solar radiation prediction using artificial neural networks\",\"authors\":\"M. Marzouq, Hakim El Fadili, Z. Lakhliai, Khalid Zenkouar\",\"doi\":\"10.1109/WITS.2017.7934658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of solar radiation plays an important role in different energy systems. The aim of this paper is twofold: firstly, we provide an updated review of solar radiation prediction models using ANN's, based on 32 retained papers, by specifying the prediction horizon, ANN architecture and the corresponding obtained performance indicators. Secondly, research limitations are carried out followed by proposed recommendations and perspectives for future investigations.\",\"PeriodicalId\":147797,\"journal\":{\"name\":\"2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WITS.2017.7934658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WITS.2017.7934658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

太阳辐射的预报在不同的能量系统中起着重要的作用。本文的目的有两个:首先,我们在32篇保留的论文的基础上,通过详细说明预测范围、神经网络架构和相应的性能指标,对利用神经网络的太阳辐射预测模型进行了最新的综述。其次,分析了研究的局限性,并对未来的研究提出了建议和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A review of solar radiation prediction using artificial neural networks
Prediction of solar radiation plays an important role in different energy systems. The aim of this paper is twofold: firstly, we provide an updated review of solar radiation prediction models using ANN's, based on 32 retained papers, by specifying the prediction horizon, ANN architecture and the corresponding obtained performance indicators. Secondly, research limitations are carried out followed by proposed recommendations and perspectives for future investigations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信