非线性边值问题的研究

N. Bouteraa, H. Djourdem
{"title":"非线性边值问题的研究","authors":"N. Bouteraa, H. Djourdem","doi":"10.5772/intechopen.100491","DOIUrl":null,"url":null,"abstract":"In this chapter, firstly we apply the iterative method to establish the existence of the positive solution for a type of nonlinear singular higher-order fractional differential equation with fractional multi-point boundary conditions. Explicit iterative sequences are given to approximate the solutions and the error estimations are also given. Secondly, we cover the multi-valued case of our problem. We investigate it for nonconvex compact valued multifunctions via a fixed point theorem for multivalued maps due to Covitz and Nadler. Two illustrative examples are presented at the end to illustrate the validity of our results.","PeriodicalId":276373,"journal":{"name":"Finite Element Method - Recent Advances and Applications [Working Title]","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study of Nonlinear Boundary Value Problem\",\"authors\":\"N. Bouteraa, H. Djourdem\",\"doi\":\"10.5772/intechopen.100491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, firstly we apply the iterative method to establish the existence of the positive solution for a type of nonlinear singular higher-order fractional differential equation with fractional multi-point boundary conditions. Explicit iterative sequences are given to approximate the solutions and the error estimations are also given. Secondly, we cover the multi-valued case of our problem. We investigate it for nonconvex compact valued multifunctions via a fixed point theorem for multivalued maps due to Covitz and Nadler. Two illustrative examples are presented at the end to illustrate the validity of our results.\",\"PeriodicalId\":276373,\"journal\":{\"name\":\"Finite Element Method - Recent Advances and Applications [Working Title]\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finite Element Method - Recent Advances and Applications [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.100491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Element Method - Recent Advances and Applications [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.100491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本章中,我们首先应用迭代法建立了一类具有分数点边界条件的非线性高阶分数阶微分方程正解的存在性。给出了近似解的显式迭代序列,并给出了误差估计。其次,我们讨论了问题的多值情况。利用Covitz和Nadler的多值映射的不动点定理,研究了非凸紧值多函数的不动点定理。最后给出了两个说明性的例子来说明我们的结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Study of Nonlinear Boundary Value Problem
In this chapter, firstly we apply the iterative method to establish the existence of the positive solution for a type of nonlinear singular higher-order fractional differential equation with fractional multi-point boundary conditions. Explicit iterative sequences are given to approximate the solutions and the error estimations are also given. Secondly, we cover the multi-valued case of our problem. We investigate it for nonconvex compact valued multifunctions via a fixed point theorem for multivalued maps due to Covitz and Nadler. Two illustrative examples are presented at the end to illustrate the validity of our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信