250吨转炉顶风口机头冷却系统的完善

S. Panteikov, L. M. Uchitel', V. V. Ivko, Yu. I. Kharchenko, Yu. P. Makhlai, V. G. Mazai
{"title":"250吨转炉顶风口机头冷却系统的完善","authors":"S. Panteikov, L. M. Uchitel', V. V. Ivko, Yu. I. Kharchenko, Yu. P. Makhlai, V. G. Mazai","doi":"10.32339/0135-5910-2019-3-327-336","DOIUrl":null,"url":null,"abstract":"Deterioration of tips cooling as a result of number of nuzzles increase in tuyere heads does not allow to use multinozzle (six and more) overhead tuyeres for increasing of steel melting technical and economical indices and operating characteristics of technological equipment. The main reason of it is as follows: deterioration ofcooling results in over-heating and burnt-outof tips material in the farthest nozzle zone following the overhead tuyeres breakage. To avoid the water stagnant areas in the farthestnozzle zones of the heads cooling route and therefore to increase the overheads oxygen tuyeres of 250-t BOF operation life, a new design of the six-nozzle tuyere head with asymmetric cooling of tips farthest zones elaborated, manufactures and tested. The perfection of the six-nozzle heads cooling system included asymmetric (relating the side surface of the nozzle block) installation behind every nozzle (in the water direction) a guidingblade of special design. It enabled to increase to a maximum degree the heat removal efficiency from the internal surface in the tip farthest zones and had a positive effect on the overhead tuyeres heads resistance. The workability of the proposed design of the six-nozzle tuyere head with asymmetric cooling of farthest zones was confirmed during test-industrial heats at 250-t BOFs of OJSC “Dneprovskysteel-works”. The heats were carried out with oxygen consumption of 800–1200 m 3/min and regime of partial afterburning ofexit gases. The water consumption for tuyeres cooling decrease from 320–340 m 3 /h, at that the  water temperature difference at the tuyere entry and exit varied in the range of 11–16 °C depending on blow-down duration. Application of the new design of the six-nozzle tuyere head with asymmetric farthest zones cooling enabled to increase the sixnozzle heads resistance by a factor 1.287 comparing with six-nozzle heads without farthest zones cooling and by a factor of 3.327 comparing with regular five-nozzle tuyere heads. The effect reached thanks to more rational cooler distribution and increase ofits velocity. The metal pick up of shafts of the six-nozzle tuyere head with asymmetric farthest zones cooling: while the five-nozzle tuyeres were taken off for salamander cutting off after 1–5 heats, the six-nozzle tuyeres were taken off for the salamander cutting off after 79–81 heats. It indicated a higher efficiency of heat running blow-down and slag regimes with application of proposed design of the six-nozzle tuyere head with asymmetric farthest zones cooling.","PeriodicalId":259995,"journal":{"name":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perfection of cooling systems of overhead tuyeres heads of 250-t BOFs\",\"authors\":\"S. Panteikov, L. M. Uchitel', V. V. Ivko, Yu. I. Kharchenko, Yu. P. Makhlai, V. G. Mazai\",\"doi\":\"10.32339/0135-5910-2019-3-327-336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deterioration of tips cooling as a result of number of nuzzles increase in tuyere heads does not allow to use multinozzle (six and more) overhead tuyeres for increasing of steel melting technical and economical indices and operating characteristics of technological equipment. The main reason of it is as follows: deterioration ofcooling results in over-heating and burnt-outof tips material in the farthest nozzle zone following the overhead tuyeres breakage. To avoid the water stagnant areas in the farthestnozzle zones of the heads cooling route and therefore to increase the overheads oxygen tuyeres of 250-t BOF operation life, a new design of the six-nozzle tuyere head with asymmetric cooling of tips farthest zones elaborated, manufactures and tested. The perfection of the six-nozzle heads cooling system included asymmetric (relating the side surface of the nozzle block) installation behind every nozzle (in the water direction) a guidingblade of special design. It enabled to increase to a maximum degree the heat removal efficiency from the internal surface in the tip farthest zones and had a positive effect on the overhead tuyeres heads resistance. The workability of the proposed design of the six-nozzle tuyere head with asymmetric cooling of farthest zones was confirmed during test-industrial heats at 250-t BOFs of OJSC “Dneprovskysteel-works”. The heats were carried out with oxygen consumption of 800–1200 m 3/min and regime of partial afterburning ofexit gases. The water consumption for tuyeres cooling decrease from 320–340 m 3 /h, at that the  water temperature difference at the tuyere entry and exit varied in the range of 11–16 °C depending on blow-down duration. Application of the new design of the six-nozzle tuyere head with asymmetric farthest zones cooling enabled to increase the sixnozzle heads resistance by a factor 1.287 comparing with six-nozzle heads without farthest zones cooling and by a factor of 3.327 comparing with regular five-nozzle tuyere heads. The effect reached thanks to more rational cooler distribution and increase ofits velocity. The metal pick up of shafts of the six-nozzle tuyere head with asymmetric farthest zones cooling: while the five-nozzle tuyeres were taken off for salamander cutting off after 1–5 heats, the six-nozzle tuyeres were taken off for the salamander cutting off after 79–81 heats. It indicated a higher efficiency of heat running blow-down and slag regimes with application of proposed design of the six-nozzle tuyere head with asymmetric farthest zones cooling.\",\"PeriodicalId\":259995,\"journal\":{\"name\":\"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32339/0135-5910-2019-3-327-336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32339/0135-5910-2019-3-327-336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于风口喷头数量增加导致喷嘴冷却恶化,不允许使用多喷嘴(6个及以上)顶置风口来提高炼钢技术经济指标和工艺设备的运行特性。其主要原因是:顶部风口断裂后,冷却恶化导致最远喷嘴区域的尖端材料过热烧坏。为了避免水头冷却路线最远喷嘴区域的水滞区,从而提高250吨转炉顶部氧气风口的运行寿命,设计了一种新型的六喷嘴喷嘴水头,尖端最远区域不对称冷却。六喷嘴头冷却系统的完善之处在于每个喷嘴(在水的方向)后面安装了一个特殊设计的导叶。它可以最大程度地提高顶部最远区域内表面的散热效率,并对顶置风口头部阻力有积极影响。在OJSC“Dneprovskysteel-works”250 t转炉的工业试验热试验中,验证了所提出的最远区域非对称冷却六喷嘴风口头设计的可行性。加热是在氧气消耗800-1200立方米/分钟和出口气体部分加力燃烧的情况下进行的。风口冷却用水量从320 ~ 340 m3 /h下降,风口入口和出口的温差根据排空时间在11 ~ 16℃范围内变化。采用具有非对称最远区冷却的六喷嘴喷嘴头的新设计,与没有最远区冷却的六喷嘴喷嘴头相比,六喷嘴喷嘴头的阻力增加了1.287倍,与常规五喷嘴喷嘴头相比,阻力增加了3.327倍。这是由于冷却器分布更合理,速度增加所致。非对称最远区冷却的六喷嘴风口头轴金属拾取器:加热1-5次后取下切割蝾螈的五喷嘴风口,加热79-81次后取下切割蝾螈的六喷嘴风口。结果表明,采用非对称最远区冷却的六喷嘴风口头设计,可以提高热流排渣效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Perfection of cooling systems of overhead tuyeres heads of 250-t BOFs
Deterioration of tips cooling as a result of number of nuzzles increase in tuyere heads does not allow to use multinozzle (six and more) overhead tuyeres for increasing of steel melting technical and economical indices and operating characteristics of technological equipment. The main reason of it is as follows: deterioration ofcooling results in over-heating and burnt-outof tips material in the farthest nozzle zone following the overhead tuyeres breakage. To avoid the water stagnant areas in the farthestnozzle zones of the heads cooling route and therefore to increase the overheads oxygen tuyeres of 250-t BOF operation life, a new design of the six-nozzle tuyere head with asymmetric cooling of tips farthest zones elaborated, manufactures and tested. The perfection of the six-nozzle heads cooling system included asymmetric (relating the side surface of the nozzle block) installation behind every nozzle (in the water direction) a guidingblade of special design. It enabled to increase to a maximum degree the heat removal efficiency from the internal surface in the tip farthest zones and had a positive effect on the overhead tuyeres heads resistance. The workability of the proposed design of the six-nozzle tuyere head with asymmetric cooling of farthest zones was confirmed during test-industrial heats at 250-t BOFs of OJSC “Dneprovskysteel-works”. The heats were carried out with oxygen consumption of 800–1200 m 3/min and regime of partial afterburning ofexit gases. The water consumption for tuyeres cooling decrease from 320–340 m 3 /h, at that the  water temperature difference at the tuyere entry and exit varied in the range of 11–16 °C depending on blow-down duration. Application of the new design of the six-nozzle tuyere head with asymmetric farthest zones cooling enabled to increase the sixnozzle heads resistance by a factor 1.287 comparing with six-nozzle heads without farthest zones cooling and by a factor of 3.327 comparing with regular five-nozzle tuyere heads. The effect reached thanks to more rational cooler distribution and increase ofits velocity. The metal pick up of shafts of the six-nozzle tuyere head with asymmetric farthest zones cooling: while the five-nozzle tuyeres were taken off for salamander cutting off after 1–5 heats, the six-nozzle tuyeres were taken off for the salamander cutting off after 79–81 heats. It indicated a higher efficiency of heat running blow-down and slag regimes with application of proposed design of the six-nozzle tuyere head with asymmetric farthest zones cooling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信