混合神经网络结构对多类分类性能的影响

Yevhenii Trochun, Evgen Pavlov, S. Stirenko, Yuri G. Gordienko
{"title":"混合神经网络结构对多类分类性能的影响","authors":"Yevhenii Trochun, Evgen Pavlov, S. Stirenko, Yuri G. Gordienko","doi":"10.1109/EUROCON52738.2021.9535586","DOIUrl":null,"url":null,"abstract":"This article describes hybrid convolutional neural network that uses one quantum circuit for image classification. The different configurations of the hybrid neural network with the quantum circuit are considered. Several different quantum circuits with different number of qubits are compared. These hybrid neural network configurations are evaluated on MNIST and MNIST Fashion datasets, which is radically different from MNIST dataset. Performance of hybrid neural network is compared for multiclass classification on MNIST and MNIST Fashion datasets for 4, 6, 8, 10 classes using quantum circuits with 2, 3, 4 qubits. The results of the experiments indicate the feasibility of using hybrid neural networks for multiclass classification.","PeriodicalId":328338,"journal":{"name":"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Hybrid Neural Network Structure on Performance of Multiclass Classification\",\"authors\":\"Yevhenii Trochun, Evgen Pavlov, S. Stirenko, Yuri G. Gordienko\",\"doi\":\"10.1109/EUROCON52738.2021.9535586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes hybrid convolutional neural network that uses one quantum circuit for image classification. The different configurations of the hybrid neural network with the quantum circuit are considered. Several different quantum circuits with different number of qubits are compared. These hybrid neural network configurations are evaluated on MNIST and MNIST Fashion datasets, which is radically different from MNIST dataset. Performance of hybrid neural network is compared for multiclass classification on MNIST and MNIST Fashion datasets for 4, 6, 8, 10 classes using quantum circuits with 2, 3, 4 qubits. The results of the experiments indicate the feasibility of using hybrid neural networks for multiclass classification.\",\"PeriodicalId\":328338,\"journal\":{\"name\":\"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON52738.2021.9535586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON52738.2021.9535586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了使用一个量子电路进行图像分类的混合卷积神经网络。考虑了具有量子电路的混合神经网络的不同结构。比较了具有不同量子比特数的几种不同的量子电路。这些混合神经网络配置在MNIST和MNIST Fashion数据集上进行了评估,这与MNIST数据集完全不同。利用2、3、4个量子比特的量子电路,比较了混合神经网络在MNIST和MNIST Fashion数据集上对4、6、8、10个类别进行多类分类的性能。实验结果表明,混合神经网络用于多类分类是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Hybrid Neural Network Structure on Performance of Multiclass Classification
This article describes hybrid convolutional neural network that uses one quantum circuit for image classification. The different configurations of the hybrid neural network with the quantum circuit are considered. Several different quantum circuits with different number of qubits are compared. These hybrid neural network configurations are evaluated on MNIST and MNIST Fashion datasets, which is radically different from MNIST dataset. Performance of hybrid neural network is compared for multiclass classification on MNIST and MNIST Fashion datasets for 4, 6, 8, 10 classes using quantum circuits with 2, 3, 4 qubits. The results of the experiments indicate the feasibility of using hybrid neural networks for multiclass classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信