自动驾驶云上的分布式深度强化学习

Mitchell Spryn, Aditya Sharma, Dhawal Parkar, Madhu Shrimal
{"title":"自动驾驶云上的分布式深度强化学习","authors":"Mitchell Spryn, Aditya Sharma, Dhawal Parkar, Madhu Shrimal","doi":"10.1145/3194085.3194088","DOIUrl":null,"url":null,"abstract":"This paper proposes an architecture for leveraging cloud computing technology to reduce training time for deep reinforcement learning models for autonomous driving by distributing the training process across a pool of virtual machines. By parallelizing the training process, careful design of the reward function and use of techniques like transfer learning, we demonstrate a decrease in training time for our example autonomous driving problem from 140 hours to less than 1 hour. We go over our network architecture, job distribution paradigm, reward function design and report results from experiments on small sized cluster (1-6 training nodes) of machines. We also discuss the limitations of our approach when trying to scale up to massive clusters.","PeriodicalId":360022,"journal":{"name":"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Distributed Deep Reinforcement Learning on the Cloud for Autonomous Driving\",\"authors\":\"Mitchell Spryn, Aditya Sharma, Dhawal Parkar, Madhu Shrimal\",\"doi\":\"10.1145/3194085.3194088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an architecture for leveraging cloud computing technology to reduce training time for deep reinforcement learning models for autonomous driving by distributing the training process across a pool of virtual machines. By parallelizing the training process, careful design of the reward function and use of techniques like transfer learning, we demonstrate a decrease in training time for our example autonomous driving problem from 140 hours to less than 1 hour. We go over our network architecture, job distribution paradigm, reward function design and report results from experiments on small sized cluster (1-6 training nodes) of machines. We also discuss the limitations of our approach when trying to scale up to massive clusters.\",\"PeriodicalId\":360022,\"journal\":{\"name\":\"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194085.3194088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194085.3194088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种利用云计算技术的架构,通过将训练过程分布在虚拟机池中来减少自动驾驶深度强化学习模型的训练时间。通过并行化训练过程,仔细设计奖励函数和使用迁移学习等技术,我们证明了将示例自动驾驶问题的训练时间从140小时减少到不到1小时。我们讨论了我们的网络架构、工作分配范式、奖励函数设计,并报告了在小型机器集群(1-6个训练节点)上的实验结果。我们还讨论了在尝试扩展到大规模集群时我们的方法的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Deep Reinforcement Learning on the Cloud for Autonomous Driving
This paper proposes an architecture for leveraging cloud computing technology to reduce training time for deep reinforcement learning models for autonomous driving by distributing the training process across a pool of virtual machines. By parallelizing the training process, careful design of the reward function and use of techniques like transfer learning, we demonstrate a decrease in training time for our example autonomous driving problem from 140 hours to less than 1 hour. We go over our network architecture, job distribution paradigm, reward function design and report results from experiments on small sized cluster (1-6 training nodes) of machines. We also discuss the limitations of our approach when trying to scale up to massive clusters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信