结合文本信息提取、分面搜索和信息可视化的综合决策支持

Daniel Sonntag, H. Profitlich
{"title":"结合文本信息提取、分面搜索和信息可视化的综合决策支持","authors":"Daniel Sonntag, H. Profitlich","doi":"10.1109/CBMS.2017.119","DOIUrl":null,"url":null,"abstract":"This work focusses on our integration steps of complex and partly unstructured medical data into a clinical research database with subsequent decision support. Our main application is an integrated facetted search tool, followed by information visualisation based on automatic information extraction results from textual documents. We describe the details of our technical architecture (open-source tools), to be replicated at other universities, research institutes, or hospitals. Our exemplary use case is nephrology, where we try to answer questions about the temporal characteristics of sequences and gain significant insight from the data for cohort selection. We report on this case study, illustrating how the application can be used by a clinician and which questions can be answered.","PeriodicalId":141105,"journal":{"name":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Integrated Decision Support by Combining Textual Information Extraction, Facetted Search and Information Visualisation\",\"authors\":\"Daniel Sonntag, H. Profitlich\",\"doi\":\"10.1109/CBMS.2017.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work focusses on our integration steps of complex and partly unstructured medical data into a clinical research database with subsequent decision support. Our main application is an integrated facetted search tool, followed by information visualisation based on automatic information extraction results from textual documents. We describe the details of our technical architecture (open-source tools), to be replicated at other universities, research institutes, or hospitals. Our exemplary use case is nephrology, where we try to answer questions about the temporal characteristics of sequences and gain significant insight from the data for cohort selection. We report on this case study, illustrating how the application can be used by a clinician and which questions can be answered.\",\"PeriodicalId\":141105,\"journal\":{\"name\":\"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2017.119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2017.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

这项工作的重点是我们将复杂和部分非结构化的医疗数据集成到临床研究数据库中,并提供后续决策支持。我们的主要应用是一个集成的分面搜索工具,其次是基于文本文档自动信息提取结果的信息可视化。我们描述了我们的技术架构(开源工具)的细节,以便在其他大学、研究机构或医院复制。我们的典型用例是肾脏病学,我们试图回答有关序列时间特征的问题,并从队列选择的数据中获得重要的见解。我们报告了这个案例研究,说明了临床医生如何使用该应用程序以及可以回答哪些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrated Decision Support by Combining Textual Information Extraction, Facetted Search and Information Visualisation
This work focusses on our integration steps of complex and partly unstructured medical data into a clinical research database with subsequent decision support. Our main application is an integrated facetted search tool, followed by information visualisation based on automatic information extraction results from textual documents. We describe the details of our technical architecture (open-source tools), to be replicated at other universities, research institutes, or hospitals. Our exemplary use case is nephrology, where we try to answer questions about the temporal characteristics of sequences and gain significant insight from the data for cohort selection. We report on this case study, illustrating how the application can be used by a clinician and which questions can be answered.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信