产生时空耦合少周期脉冲的超材料

A. Zdagkas, H. Fang, T. Pu, V. Savinov, N. Papasimakis, N. Zheludev
{"title":"产生时空耦合少周期脉冲的超材料","authors":"A. Zdagkas, H. Fang, T. Pu, V. Savinov, N. Papasimakis, N. Zheludev","doi":"10.1109/MetaMaterials.2019.8900836","DOIUrl":null,"url":null,"abstract":"Flying Doughnuts are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable pulses with complex topology of spectrally broadband vortices. We present the experimental generation of Flying Doughnut pulses and discuss their topological and spatiotemporal structure.","PeriodicalId":395568,"journal":{"name":"2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metamaterials for generating space-time coupled few-cycle pulses\",\"authors\":\"A. Zdagkas, H. Fang, T. Pu, V. Savinov, N. Papasimakis, N. Zheludev\",\"doi\":\"10.1109/MetaMaterials.2019.8900836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flying Doughnuts are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable pulses with complex topology of spectrally broadband vortices. We present the experimental generation of Flying Doughnut pulses and discuss their topological and spatiotemporal structure.\",\"PeriodicalId\":395568,\"journal\":{\"name\":\"2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetaMaterials.2019.8900836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetaMaterials.2019.8900836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

飞行甜甜圈是麦克斯韦方程组的精确传播解,其形式是单循环、时空不可分脉冲,具有复杂的频谱宽带涡旋拓扑结构。我们提出了飞行甜甜圈脉冲的实验产生,并讨论了它们的拓扑结构和时空结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metamaterials for generating space-time coupled few-cycle pulses
Flying Doughnuts are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable pulses with complex topology of spectrally broadband vortices. We present the experimental generation of Flying Doughnut pulses and discuss their topological and spatiotemporal structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信