A. Zdagkas, H. Fang, T. Pu, V. Savinov, N. Papasimakis, N. Zheludev
{"title":"产生时空耦合少周期脉冲的超材料","authors":"A. Zdagkas, H. Fang, T. Pu, V. Savinov, N. Papasimakis, N. Zheludev","doi":"10.1109/MetaMaterials.2019.8900836","DOIUrl":null,"url":null,"abstract":"Flying Doughnuts are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable pulses with complex topology of spectrally broadband vortices. We present the experimental generation of Flying Doughnut pulses and discuss their topological and spatiotemporal structure.","PeriodicalId":395568,"journal":{"name":"2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metamaterials for generating space-time coupled few-cycle pulses\",\"authors\":\"A. Zdagkas, H. Fang, T. Pu, V. Savinov, N. Papasimakis, N. Zheludev\",\"doi\":\"10.1109/MetaMaterials.2019.8900836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flying Doughnuts are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable pulses with complex topology of spectrally broadband vortices. We present the experimental generation of Flying Doughnut pulses and discuss their topological and spatiotemporal structure.\",\"PeriodicalId\":395568,\"journal\":{\"name\":\"2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetaMaterials.2019.8900836\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetaMaterials.2019.8900836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Metamaterials for generating space-time coupled few-cycle pulses
Flying Doughnuts are exact propagating solutions of Maxwell equations in the form of single-cycle, space-time non-separable pulses with complex topology of spectrally broadband vortices. We present the experimental generation of Flying Doughnut pulses and discuss their topological and spatiotemporal structure.