基于OFDM的WLAN连接对连续波信号干扰脆弱性的详细研究

Henrik Brech, H. Garbe
{"title":"基于OFDM的WLAN连接对连续波信号干扰脆弱性的详细研究","authors":"Henrik Brech, H. Garbe","doi":"10.1109/EMCEurope51680.2022.9900952","DOIUrl":null,"url":null,"abstract":"A new measurement setup for investigating the interference behaviour of Continuous Wave signals on packet based information transfer of the IEEE 802.11 standard in the 2.4 GHz ISM band is presented in this paper. The main focus of the measurement setup is a low level of complexity to perform reproducible results. A high degree of automation allows very detailed measurements of the Packet Error Rate over a wide range of CW frequencies and magnitudes. The measurement results are divided into depictions of the Packet Error Rate and Frame Check Sequence errors. Two different IEEE 802.11 standards with each using a 64-QAM and a BPSK modulation are presented in order to demonstrate the new measurement setup and investigate the vulnerability behaviour against narrow band interferers. Especially the subcarriers of the OFDM based WLAN signal tend to be the most vulnerable frequencies on higher coding schemes. The Pilot sub carrier frequencies in particular have proven to be even more vulnerable than the Data subcarriers.","PeriodicalId":268262,"journal":{"name":"2022 International Symposium on Electromagnetic Compatibility – EMC Europe","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detailed Investigation of the Vulnerability of an OFDM based WLAN Connection to CW Signal Interference\",\"authors\":\"Henrik Brech, H. Garbe\",\"doi\":\"10.1109/EMCEurope51680.2022.9900952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new measurement setup for investigating the interference behaviour of Continuous Wave signals on packet based information transfer of the IEEE 802.11 standard in the 2.4 GHz ISM band is presented in this paper. The main focus of the measurement setup is a low level of complexity to perform reproducible results. A high degree of automation allows very detailed measurements of the Packet Error Rate over a wide range of CW frequencies and magnitudes. The measurement results are divided into depictions of the Packet Error Rate and Frame Check Sequence errors. Two different IEEE 802.11 standards with each using a 64-QAM and a BPSK modulation are presented in order to demonstrate the new measurement setup and investigate the vulnerability behaviour against narrow band interferers. Especially the subcarriers of the OFDM based WLAN signal tend to be the most vulnerable frequencies on higher coding schemes. The Pilot sub carrier frequencies in particular have proven to be even more vulnerable than the Data subcarriers.\",\"PeriodicalId\":268262,\"journal\":{\"name\":\"2022 International Symposium on Electromagnetic Compatibility – EMC Europe\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Electromagnetic Compatibility – EMC Europe\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMCEurope51680.2022.9900952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Electromagnetic Compatibility – EMC Europe","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCEurope51680.2022.9900952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的测量装置,用于研究2.4 GHz ISM频段IEEE 802.11标准中连续波信号对分组信息传输的干扰行为。测量设置的主要焦点是执行可重复结果的低复杂度。高度自动化允许在广泛的连续波频率和幅度范围内非常详细地测量分组错误率。测量结果分为分组错误率和帧校验序列错误的描述。提出了两个不同的IEEE 802.11标准,每个标准使用64-QAM和BPSK调制,以演示新的测量设置并研究针对窄带干扰的脆弱性行为。特别是基于OFDM的无线局域网信号的子载波在较高的编码方案中往往是最脆弱的频率。特别是导频子载波频率已被证明比数据子载波更容易受到攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detailed Investigation of the Vulnerability of an OFDM based WLAN Connection to CW Signal Interference
A new measurement setup for investigating the interference behaviour of Continuous Wave signals on packet based information transfer of the IEEE 802.11 standard in the 2.4 GHz ISM band is presented in this paper. The main focus of the measurement setup is a low level of complexity to perform reproducible results. A high degree of automation allows very detailed measurements of the Packet Error Rate over a wide range of CW frequencies and magnitudes. The measurement results are divided into depictions of the Packet Error Rate and Frame Check Sequence errors. Two different IEEE 802.11 standards with each using a 64-QAM and a BPSK modulation are presented in order to demonstrate the new measurement setup and investigate the vulnerability behaviour against narrow band interferers. Especially the subcarriers of the OFDM based WLAN signal tend to be the most vulnerable frequencies on higher coding schemes. The Pilot sub carrier frequencies in particular have proven to be even more vulnerable than the Data subcarriers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信