Takuma Nemoto, R. E. Mohan, Shunsuke Nansai, M. Iwase
{"title":"具有滚动运动的轮蛛:建模与仿真","authors":"Takuma Nemoto, R. E. Mohan, Shunsuke Nansai, M. Iwase","doi":"10.1109/ICARA.2015.7081170","DOIUrl":null,"url":null,"abstract":"This study aims to develop mathematical model which can capture behavior of “wheel spider” that can perform rolling locomotion and analyze characteristics of the behavior to realize biologically inspired locomotion by robots. Therefore, a rolling wheel spider model is developed by applying constraint force on the ground to a wheel spider model without the ground and considering velocity transformation due to collision. As a result, it was found that the wheel spider goes downhill at a constant speed with rolling whether it is provided with initial velocity or not. In conclusion, the wheel spider can go down the slope over a certain pitch without providing initial velocity.","PeriodicalId":176657,"journal":{"name":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Wheel spider with rolling locomotion: Modeling and simulation\",\"authors\":\"Takuma Nemoto, R. E. Mohan, Shunsuke Nansai, M. Iwase\",\"doi\":\"10.1109/ICARA.2015.7081170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to develop mathematical model which can capture behavior of “wheel spider” that can perform rolling locomotion and analyze characteristics of the behavior to realize biologically inspired locomotion by robots. Therefore, a rolling wheel spider model is developed by applying constraint force on the ground to a wheel spider model without the ground and considering velocity transformation due to collision. As a result, it was found that the wheel spider goes downhill at a constant speed with rolling whether it is provided with initial velocity or not. In conclusion, the wheel spider can go down the slope over a certain pitch without providing initial velocity.\",\"PeriodicalId\":176657,\"journal\":{\"name\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 6th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA.2015.7081170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 6th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2015.7081170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wheel spider with rolling locomotion: Modeling and simulation
This study aims to develop mathematical model which can capture behavior of “wheel spider” that can perform rolling locomotion and analyze characteristics of the behavior to realize biologically inspired locomotion by robots. Therefore, a rolling wheel spider model is developed by applying constraint force on the ground to a wheel spider model without the ground and considering velocity transformation due to collision. As a result, it was found that the wheel spider goes downhill at a constant speed with rolling whether it is provided with initial velocity or not. In conclusion, the wheel spider can go down the slope over a certain pitch without providing initial velocity.