语言识别中的韵律特征分析与选择

Raymond W. M. Ng, Tan Lee, C. Leung, B. Ma, Haizhou Li
{"title":"语言识别中的韵律特征分析与选择","authors":"Raymond W. M. Ng, Tan Lee, C. Leung, B. Ma, Haizhou Li","doi":"10.1109/IALP.2009.34","DOIUrl":null,"url":null,"abstract":"Prosodic features are relatively simple in their structures and are believed to be effective in some speech recognition tasks. However, this kind of features is subject to undesirable bias factors, such as speaking styles. To cope with this, researchers have suggested various normalization and measure methods to the features, which makes the feature inventory very large. In this paper, we use a mutual information criterion to analyze and select a number of prosody-related features in a language identification (LID) task. Among twelve optimal features, eight of them are elaborated in this paper. The feature analysis metric, z-score, is shown to have a moderate to high correlation with LID accuracies. Feature selection proposed in this paper brings about the best performance among all prosodic LID systems to our knowledge. A further attempt in system fusion shows a 13% relative improvement the prosodic LID system brings to the conventional phonotactic approach to LID.","PeriodicalId":156840,"journal":{"name":"2009 International Conference on Asian Language Processing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Analysis and Selection of Prosodic Features for Language Identification\",\"authors\":\"Raymond W. M. Ng, Tan Lee, C. Leung, B. Ma, Haizhou Li\",\"doi\":\"10.1109/IALP.2009.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prosodic features are relatively simple in their structures and are believed to be effective in some speech recognition tasks. However, this kind of features is subject to undesirable bias factors, such as speaking styles. To cope with this, researchers have suggested various normalization and measure methods to the features, which makes the feature inventory very large. In this paper, we use a mutual information criterion to analyze and select a number of prosody-related features in a language identification (LID) task. Among twelve optimal features, eight of them are elaborated in this paper. The feature analysis metric, z-score, is shown to have a moderate to high correlation with LID accuracies. Feature selection proposed in this paper brings about the best performance among all prosodic LID systems to our knowledge. A further attempt in system fusion shows a 13% relative improvement the prosodic LID system brings to the conventional phonotactic approach to LID.\",\"PeriodicalId\":156840,\"journal\":{\"name\":\"2009 International Conference on Asian Language Processing\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2009.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2009.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

韵律特征的结构相对简单,被认为在某些语音识别任务中是有效的。然而,这种特征会受到不受欢迎的偏见因素的影响,比如说话风格。为了解决这个问题,研究者们提出了各种特征的归一化和度量方法,这使得特征库非常庞大。在本文中,我们使用互信息准则来分析和选择语言识别(LID)任务中的韵律相关特征。在12个最优特征中,本文对其中的8个特征进行了阐述。特征分析指标z-score显示与LID精度具有中等到高度的相关性。本文所提出的特征选择使我们所知的所有韵律LID系统的性能最好。系统融合的进一步尝试表明,韵律LID系统带来了13%的相对改进,比传统的声致化方法的LID。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis and Selection of Prosodic Features for Language Identification
Prosodic features are relatively simple in their structures and are believed to be effective in some speech recognition tasks. However, this kind of features is subject to undesirable bias factors, such as speaking styles. To cope with this, researchers have suggested various normalization and measure methods to the features, which makes the feature inventory very large. In this paper, we use a mutual information criterion to analyze and select a number of prosody-related features in a language identification (LID) task. Among twelve optimal features, eight of them are elaborated in this paper. The feature analysis metric, z-score, is shown to have a moderate to high correlation with LID accuracies. Feature selection proposed in this paper brings about the best performance among all prosodic LID systems to our knowledge. A further attempt in system fusion shows a 13% relative improvement the prosodic LID system brings to the conventional phonotactic approach to LID.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信