{"title":"基于应答的口语对话系统自信注释","authors":"A. Gruenstein","doi":"10.3115/1622064.1622067","DOIUrl":null,"url":null,"abstract":"Spoken and multimodal dialogue systems typically make use of confidence scores to choose among (or reject) a speech recognizer's N-best hypotheses for a particular utterance. We argue that it is beneficial to instead choose among a list of candidate system responses. We propose a novel method in which a confidence score for each response is derived from a classifier trained on acoustic and lexical features emitted by the recognizer, as well as features culled from the generation of the candidate response itself. Our response-based method yields statistically significant improvements in F-measure over a baseline in which hypotheses are chosen based on recognition confidence scores only.","PeriodicalId":426429,"journal":{"name":"SIGDIAL Workshop","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Response-Based Confidence Annotation for Spoken Dialogue Systems\",\"authors\":\"A. Gruenstein\",\"doi\":\"10.3115/1622064.1622067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spoken and multimodal dialogue systems typically make use of confidence scores to choose among (or reject) a speech recognizer's N-best hypotheses for a particular utterance. We argue that it is beneficial to instead choose among a list of candidate system responses. We propose a novel method in which a confidence score for each response is derived from a classifier trained on acoustic and lexical features emitted by the recognizer, as well as features culled from the generation of the candidate response itself. Our response-based method yields statistically significant improvements in F-measure over a baseline in which hypotheses are chosen based on recognition confidence scores only.\",\"PeriodicalId\":426429,\"journal\":{\"name\":\"SIGDIAL Workshop\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGDIAL Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/1622064.1622067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGDIAL Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1622064.1622067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Response-Based Confidence Annotation for Spoken Dialogue Systems
Spoken and multimodal dialogue systems typically make use of confidence scores to choose among (or reject) a speech recognizer's N-best hypotheses for a particular utterance. We argue that it is beneficial to instead choose among a list of candidate system responses. We propose a novel method in which a confidence score for each response is derived from a classifier trained on acoustic and lexical features emitted by the recognizer, as well as features culled from the generation of the candidate response itself. Our response-based method yields statistically significant improvements in F-measure over a baseline in which hypotheses are chosen based on recognition confidence scores only.