Copula图估计量的回归模型

Simon M. S. Lo, R. Wilke
{"title":"Copula图估计量的回归模型","authors":"Simon M. S. Lo, R. Wilke","doi":"10.2139/ssrn.1858645","DOIUrl":null,"url":null,"abstract":"We consider a dependent competing risks model with many risks and many covariates. We show identifiability of the marginal distributions of latent variables for a given dependence structure. Instead of directly estimating these distributions, we suggest a plug-in regression framework for the Copula-Graphic estimator which utilizes a consistent estimator for the cumulative incidence curves. Our model is an attractive empirical approach as it does not require knowledge of the marginal distributions which are typically unknown in applications. We illustrate the applicability of our approach with the help of a parametric unemployment duration model with an unknown dependence structure. We construct identification bounds for the marginal distributions and partial effects in response to covariate changes. The bounds for the partial effects are surprisingly tight and often reveal the direction of the covariate effect.","PeriodicalId":384078,"journal":{"name":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Regression Model for the Copula Graphic Estimator\",\"authors\":\"Simon M. S. Lo, R. Wilke\",\"doi\":\"10.2139/ssrn.1858645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a dependent competing risks model with many risks and many covariates. We show identifiability of the marginal distributions of latent variables for a given dependence structure. Instead of directly estimating these distributions, we suggest a plug-in regression framework for the Copula-Graphic estimator which utilizes a consistent estimator for the cumulative incidence curves. Our model is an attractive empirical approach as it does not require knowledge of the marginal distributions which are typically unknown in applications. We illustrate the applicability of our approach with the help of a parametric unemployment duration model with an unknown dependence structure. We construct identification bounds for the marginal distributions and partial effects in response to covariate changes. The bounds for the partial effects are surprisingly tight and often reveal the direction of the covariate effect.\",\"PeriodicalId\":384078,\"journal\":{\"name\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1858645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Data Collection & Data Estimation Methodology (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1858645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑一个具有多风险和多协变量的依赖竞争风险模型。我们证明了给定依赖结构的潜在变量的边际分布的可辨识性。而不是直接估计这些分布,我们建议一个插件回归框架的Copula-Graphic估计,利用累积发生率曲线的一致估计。我们的模型是一种有吸引力的经验方法,因为它不需要边际分布的知识,这在应用中通常是未知的。我们用一个具有未知依赖结构的参数失业持续时间模型来说明我们方法的适用性。我们为响应协变量变化的边际分布和部分效应构建识别界。部分效应的界限非常紧密,并且经常揭示协变量效应的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Regression Model for the Copula Graphic Estimator
We consider a dependent competing risks model with many risks and many covariates. We show identifiability of the marginal distributions of latent variables for a given dependence structure. Instead of directly estimating these distributions, we suggest a plug-in regression framework for the Copula-Graphic estimator which utilizes a consistent estimator for the cumulative incidence curves. Our model is an attractive empirical approach as it does not require knowledge of the marginal distributions which are typically unknown in applications. We illustrate the applicability of our approach with the help of a parametric unemployment duration model with an unknown dependence structure. We construct identification bounds for the marginal distributions and partial effects in response to covariate changes. The bounds for the partial effects are surprisingly tight and often reveal the direction of the covariate effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信