h-BN中碳空位双稳态缺陷

Song Li, Á. Gali
{"title":"h-BN中碳空位双稳态缺陷","authors":"Song Li, Á. Gali","doi":"10.3389/frqst.2022.1007756","DOIUrl":null,"url":null,"abstract":"Single-photon emitters in hexagonal boron nitride have been extensively studied recently. Although unambiguous identification of the emitters is still under intense research, carbon-related defects are believed to play a vital role for the emitter producing zero-phonon lines in the range of 1.6–2.2 eV. In this study, we systematically investigate two configurations of carbon-vacancy defects, VNCB and CNVB, by means of density functional theory calculations. We calculated the reaction barrier energies from one defect to the other to determine relative stability. We find that the barrier energies are charge dependent, and CNVB could easily transform to VNCB in neutral- and positive-charge states while it is stable when negatively charged. Formation energy calculations show that the VNCB is the dominant defect over CNVB. However, neither VNCB nor CNVB has suitable fluorescence spectra that could reproduce the observed ones. Our results indicate that the origin of the 1.6-to-2.2-eV emitters should be other carbon-related configurations.","PeriodicalId":108649,"journal":{"name":"Frontiers in Quantum Science and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Bistable carbon-vacancy defects in h-BN\",\"authors\":\"Song Li, Á. Gali\",\"doi\":\"10.3389/frqst.2022.1007756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-photon emitters in hexagonal boron nitride have been extensively studied recently. Although unambiguous identification of the emitters is still under intense research, carbon-related defects are believed to play a vital role for the emitter producing zero-phonon lines in the range of 1.6–2.2 eV. In this study, we systematically investigate two configurations of carbon-vacancy defects, VNCB and CNVB, by means of density functional theory calculations. We calculated the reaction barrier energies from one defect to the other to determine relative stability. We find that the barrier energies are charge dependent, and CNVB could easily transform to VNCB in neutral- and positive-charge states while it is stable when negatively charged. Formation energy calculations show that the VNCB is the dominant defect over CNVB. However, neither VNCB nor CNVB has suitable fluorescence spectra that could reproduce the observed ones. Our results indicate that the origin of the 1.6-to-2.2-eV emitters should be other carbon-related configurations.\",\"PeriodicalId\":108649,\"journal\":{\"name\":\"Frontiers in Quantum Science and Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Quantum Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frqst.2022.1007756\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Quantum Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frqst.2022.1007756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

六方氮化硼的单光子发射体近年来得到了广泛的研究。尽管对发射体的明确识别仍在激烈的研究中,但碳相关缺陷被认为对产生1.6-2.2 eV范围内的零声子线的发射体起着至关重要的作用。本文采用密度泛函理论计算方法,系统地研究了碳空位缺陷VNCB和CNVB两种构型。我们计算了从一个缺陷到另一个缺陷的反应势垒能,以确定相对稳定性。我们发现势垒能与电荷有关,CNVB在中性和正电荷状态下很容易转变为VNCB,而带负电荷时则很稳定。地层能量计算表明,VNCB是CNVB的主要缺陷。然而,VNCB和CNVB都没有合适的荧光光谱来再现观察到的荧光光谱。我们的研究结果表明,1.6- 2.2 ev的发射源应该是其他与碳相关的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bistable carbon-vacancy defects in h-BN
Single-photon emitters in hexagonal boron nitride have been extensively studied recently. Although unambiguous identification of the emitters is still under intense research, carbon-related defects are believed to play a vital role for the emitter producing zero-phonon lines in the range of 1.6–2.2 eV. In this study, we systematically investigate two configurations of carbon-vacancy defects, VNCB and CNVB, by means of density functional theory calculations. We calculated the reaction barrier energies from one defect to the other to determine relative stability. We find that the barrier energies are charge dependent, and CNVB could easily transform to VNCB in neutral- and positive-charge states while it is stable when negatively charged. Formation energy calculations show that the VNCB is the dominant defect over CNVB. However, neither VNCB nor CNVB has suitable fluorescence spectra that could reproduce the observed ones. Our results indicate that the origin of the 1.6-to-2.2-eV emitters should be other carbon-related configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信