{"title":"一种多宽带信号检测、数据关联和跟踪的集成方法","authors":"C. Christou","doi":"10.1109/ICIF.2002.1021227","DOIUrl":null,"url":null,"abstract":"The present work explores a new method of integrated detection, localization, and tracking of multiple broadband signals directly from array data, without the requirement of distinct data association. The method is based on Maximum A-Posteriori probability concepts and combines Maximum Likelihood direction finding techniques with Kalman Filter theory. Implicit data association is given by a Nonlinear Programming scheme that simplifies the solution of a constrained optimization problem. Assuming Markov Motion and random Gaussian signals and noise, diverse kinematic scenarios for both synthetic and real data sets were investigated. Full data batch, semi-sequential and fully sequential variants were developed in element space, beamspace and windowed element space. The method was found to work well down to a signal-to-noise ratio of -10 dB, and for highly dynamic scenarios. An alternating projection method was used for contact state initialization and signal enumeration.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An integrated method to detection, data association and tracking of multiple broadband signals\",\"authors\":\"C. Christou\",\"doi\":\"10.1109/ICIF.2002.1021227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work explores a new method of integrated detection, localization, and tracking of multiple broadband signals directly from array data, without the requirement of distinct data association. The method is based on Maximum A-Posteriori probability concepts and combines Maximum Likelihood direction finding techniques with Kalman Filter theory. Implicit data association is given by a Nonlinear Programming scheme that simplifies the solution of a constrained optimization problem. Assuming Markov Motion and random Gaussian signals and noise, diverse kinematic scenarios for both synthetic and real data sets were investigated. Full data batch, semi-sequential and fully sequential variants were developed in element space, beamspace and windowed element space. The method was found to work well down to a signal-to-noise ratio of -10 dB, and for highly dynamic scenarios. An alternating projection method was used for contact state initialization and signal enumeration.\",\"PeriodicalId\":399150,\"journal\":{\"name\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIF.2002.1021227\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1021227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An integrated method to detection, data association and tracking of multiple broadband signals
The present work explores a new method of integrated detection, localization, and tracking of multiple broadband signals directly from array data, without the requirement of distinct data association. The method is based on Maximum A-Posteriori probability concepts and combines Maximum Likelihood direction finding techniques with Kalman Filter theory. Implicit data association is given by a Nonlinear Programming scheme that simplifies the solution of a constrained optimization problem. Assuming Markov Motion and random Gaussian signals and noise, diverse kinematic scenarios for both synthetic and real data sets were investigated. Full data batch, semi-sequential and fully sequential variants were developed in element space, beamspace and windowed element space. The method was found to work well down to a signal-to-noise ratio of -10 dB, and for highly dynamic scenarios. An alternating projection method was used for contact state initialization and signal enumeration.