情感分类中的领域自适应

Diego Uribe
{"title":"情感分类中的领域自适应","authors":"Diego Uribe","doi":"10.1109/ICMLA.2010.133","DOIUrl":null,"url":null,"abstract":"In this paper we analyse one of the most challenging problems in natural language processing: domain adaptation in sentiment classification. In particular, we look for generic features by making use of linguistic patterns as an alternative to the commonly feature vectors based on ngrams. The experimentation conducted shows how sentiment classification is highly sensitive to the domain from which the training data are extracted. However, the results of the experimentation also show how a model constructed around linguistic patterns is a plausible alternative for sentiment classification over some domains.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Domain Adaptation in Sentiment Classification\",\"authors\":\"Diego Uribe\",\"doi\":\"10.1109/ICMLA.2010.133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we analyse one of the most challenging problems in natural language processing: domain adaptation in sentiment classification. In particular, we look for generic features by making use of linguistic patterns as an alternative to the commonly feature vectors based on ngrams. The experimentation conducted shows how sentiment classification is highly sensitive to the domain from which the training data are extracted. However, the results of the experimentation also show how a model constructed around linguistic patterns is a plausible alternative for sentiment classification over some domains.\",\"PeriodicalId\":336514,\"journal\":{\"name\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Ninth International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2010.133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

本文分析了自然语言处理中最具挑战性的问题之一:情感分类中的领域自适应。特别是,我们通过使用语言模式作为基于ngram的常见特征向量的替代方法来寻找通用特征。实验表明,情感分类对提取训练数据的领域高度敏感。然而,实验结果也表明,围绕语言模式构建的模型是如何在某些领域进行情感分类的合理替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain Adaptation in Sentiment Classification
In this paper we analyse one of the most challenging problems in natural language processing: domain adaptation in sentiment classification. In particular, we look for generic features by making use of linguistic patterns as an alternative to the commonly feature vectors based on ngrams. The experimentation conducted shows how sentiment classification is highly sensitive to the domain from which the training data are extracted. However, the results of the experimentation also show how a model constructed around linguistic patterns is a plausible alternative for sentiment classification over some domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信