基于神经网络的汉语咨询问题分层语义提取模型

Yingtao Wang, Xiaojun Huang
{"title":"基于神经网络的汉语咨询问题分层语义提取模型","authors":"Yingtao Wang, Xiaojun Huang","doi":"10.1109/ICSESS.2017.8342963","DOIUrl":null,"url":null,"abstract":"In the Chinese natural language processing, this paper proposes a hierarchical semantic learning model based on the neural network model for the semantic understanding of the counseling question. The attention mechanism is used to integrate the factual part of the original problem into the core question part and it can enrich the final representation of the semantic information and highlight the main features. Experiments show that the hierarchical learning structure can extract the structural features of the counseling question well, and contains more semantic information than the traditional structure which directly learns the problem, so that the final vector has higher similarity in the space.","PeriodicalId":179815,"journal":{"name":"2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A hierarchical semantic extraction model for Chinese counseling question based on neural networks\",\"authors\":\"Yingtao Wang, Xiaojun Huang\",\"doi\":\"10.1109/ICSESS.2017.8342963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Chinese natural language processing, this paper proposes a hierarchical semantic learning model based on the neural network model for the semantic understanding of the counseling question. The attention mechanism is used to integrate the factual part of the original problem into the core question part and it can enrich the final representation of the semantic information and highlight the main features. Experiments show that the hierarchical learning structure can extract the structural features of the counseling question well, and contains more semantic information than the traditional structure which directly learns the problem, so that the final vector has higher similarity in the space.\",\"PeriodicalId\":179815,\"journal\":{\"name\":\"2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS.2017.8342963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS.2017.8342963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在中文自然语言处理中,本文提出了一种基于神经网络模型的分层语义学习模型,用于心理咨询问题的语义理解。利用注意机制将原问题的事实部分整合到核心问题部分中,丰富了语义信息的最终表征,突出了主要特征。实验表明,分层学习结构能够较好地提取咨询问题的结构特征,并且比直接学习问题的传统结构包含更多的语义信息,从而使最终向量在空间上具有更高的相似度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hierarchical semantic extraction model for Chinese counseling question based on neural networks
In the Chinese natural language processing, this paper proposes a hierarchical semantic learning model based on the neural network model for the semantic understanding of the counseling question. The attention mechanism is used to integrate the factual part of the original problem into the core question part and it can enrich the final representation of the semantic information and highlight the main features. Experiments show that the hierarchical learning structure can extract the structural features of the counseling question well, and contains more semantic information than the traditional structure which directly learns the problem, so that the final vector has higher similarity in the space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信