基于深度强化学习的光电器件最优摄动

S. S. Shuvo, Huruy Gebremariam, Yasin Yılmaz
{"title":"基于深度强化学习的光电器件最优摄动","authors":"S. S. Shuvo, Huruy Gebremariam, Yasin Yılmaz","doi":"10.1109/NAPS52732.2021.9654514","DOIUrl":null,"url":null,"abstract":"Methods to draw maximum power from Photovoltaic (PV) modules are an ongoing research topic. The socalled Maximum Power Point Tracking (MPPT) method aims to operate the PV module at its maximum power point (MPP) by matching the load resistance to its characteristic resistance, which changes with temperature and solar irradiance. Perturbation and Observation (P&O) is a popular method that lays the foundation for many advanced techniques. We propose a deep reinforcement learning (RL) based algorithm to determine the optimal perturbation size to reach the MPP. Our method utilizes an artificial neural network-based predictor to determine the MPP from temperature and solar irradiance measurements. The proposed technique provides an effective learning-based solution to the classical MPPT problem. The effectiveness of our model is demonstrated through comparative analysis with respect to the popular methods from the literature.","PeriodicalId":123077,"journal":{"name":"2021 North American Power Symposium (NAPS)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep Reinforcement Learning Based Optimal Perturbation for MPPT in Photovoltaics\",\"authors\":\"S. S. Shuvo, Huruy Gebremariam, Yasin Yılmaz\",\"doi\":\"10.1109/NAPS52732.2021.9654514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methods to draw maximum power from Photovoltaic (PV) modules are an ongoing research topic. The socalled Maximum Power Point Tracking (MPPT) method aims to operate the PV module at its maximum power point (MPP) by matching the load resistance to its characteristic resistance, which changes with temperature and solar irradiance. Perturbation and Observation (P&O) is a popular method that lays the foundation for many advanced techniques. We propose a deep reinforcement learning (RL) based algorithm to determine the optimal perturbation size to reach the MPP. Our method utilizes an artificial neural network-based predictor to determine the MPP from temperature and solar irradiance measurements. The proposed technique provides an effective learning-based solution to the classical MPPT problem. The effectiveness of our model is demonstrated through comparative analysis with respect to the popular methods from the literature.\",\"PeriodicalId\":123077,\"journal\":{\"name\":\"2021 North American Power Symposium (NAPS)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS52732.2021.9654514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS52732.2021.9654514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如何从光伏(PV)模块中获取最大功率是一个正在进行的研究课题。所谓的最大功率点跟踪(MPPT)方法旨在通过将负载电阻与其随温度和太阳辐照度变化的特征电阻相匹配,使光伏组件在最大功率点(MPP)运行。微扰观测(P&O)是一种流行的方法,为许多先进的技术奠定了基础。我们提出了一种基于深度强化学习(RL)的算法来确定达到MPP的最佳扰动大小。我们的方法利用基于人工神经网络的预测器从温度和太阳辐照度测量中确定MPP。该技术为经典的MPPT问题提供了一种有效的基于学习的解决方案。通过与文献中常用方法的比较分析,证明了我们模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Reinforcement Learning Based Optimal Perturbation for MPPT in Photovoltaics
Methods to draw maximum power from Photovoltaic (PV) modules are an ongoing research topic. The socalled Maximum Power Point Tracking (MPPT) method aims to operate the PV module at its maximum power point (MPP) by matching the load resistance to its characteristic resistance, which changes with temperature and solar irradiance. Perturbation and Observation (P&O) is a popular method that lays the foundation for many advanced techniques. We propose a deep reinforcement learning (RL) based algorithm to determine the optimal perturbation size to reach the MPP. Our method utilizes an artificial neural network-based predictor to determine the MPP from temperature and solar irradiance measurements. The proposed technique provides an effective learning-based solution to the classical MPPT problem. The effectiveness of our model is demonstrated through comparative analysis with respect to the popular methods from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信