编码理论在三阶射影空间中的新应用

Hajir Abdullah, N. Yahya
{"title":"编码理论在三阶射影空间中的新应用","authors":"Hajir Abdullah, N. Yahya","doi":"10.31972/ticma22.14","DOIUrl":null,"url":null,"abstract":"The main aim of this paper is to introduce the relationship between the topic of coding theory and the projective space in field three and test the code. The maximum value of size of code over finite field of order three and an incidence matrix with the parameters, n (length of code), d (minimum distance of code) and e (error-correcting of code) have been constructed. With a theorem and a result that test the code if it is perfect or not.","PeriodicalId":269628,"journal":{"name":"Proceeding of 3rd International Conference of Mathematics and its Applications","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New Applications of Coding Theory in The Projective Space of Order Three\",\"authors\":\"Hajir Abdullah, N. Yahya\",\"doi\":\"10.31972/ticma22.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main aim of this paper is to introduce the relationship between the topic of coding theory and the projective space in field three and test the code. The maximum value of size of code over finite field of order three and an incidence matrix with the parameters, n (length of code), d (minimum distance of code) and e (error-correcting of code) have been constructed. With a theorem and a result that test the code if it is perfect or not.\",\"PeriodicalId\":269628,\"journal\":{\"name\":\"Proceeding of 3rd International Conference of Mathematics and its Applications\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of 3rd International Conference of Mathematics and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31972/ticma22.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of 3rd International Conference of Mathematics and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31972/ticma22.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的主要目的是介绍编码理论的主题与领域三的射影空间之间的关系,并对编码进行检验。构造了三阶有限域上码码大小的最大值和一个参数为n(码码长度)、d(码码最小距离)和e(码码纠错)的关联矩阵。用一个定理和一个结果来测试代码是否完美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Applications of Coding Theory in The Projective Space of Order Three
The main aim of this paper is to introduce the relationship between the topic of coding theory and the projective space in field three and test the code. The maximum value of size of code over finite field of order three and an incidence matrix with the parameters, n (length of code), d (minimum distance of code) and e (error-correcting of code) have been constructed. With a theorem and a result that test the code if it is perfect or not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信