Ted Kronvall, Stefan Ingi Adalbjornsson, Santhosh Nadig, A. Jakobsson
{"title":"基于协方差拟合准则的在线群稀疏估计","authors":"Ted Kronvall, Stefan Ingi Adalbjornsson, Santhosh Nadig, A. Jakobsson","doi":"10.23919/EUSIPCO.2017.8081580","DOIUrl":null,"url":null,"abstract":"In this paper, we present a time-recursive implementation of a recent hyperparameter-free group-sparse estimation technique. This is achieved by reformulating the original method, termed group-SPICE, as a square-root group-LASSO with a suitable regularization level, for which a time-recursive implementation is derived. Using a proximal gradient step for lowering the computational cost, the proposed method may effectively cope with data sequences consisting of both stationary and non-stationary signals, such as transients, and/or amplitude modulated signals. Numerical examples illustrates the efficacy of the proposed method for both coherent Gaussian dictionaries and for the multi-pitch estimation problem.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"143 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Online group-sparse estimation using the covariance fitting criterion\",\"authors\":\"Ted Kronvall, Stefan Ingi Adalbjornsson, Santhosh Nadig, A. Jakobsson\",\"doi\":\"10.23919/EUSIPCO.2017.8081580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a time-recursive implementation of a recent hyperparameter-free group-sparse estimation technique. This is achieved by reformulating the original method, termed group-SPICE, as a square-root group-LASSO with a suitable regularization level, for which a time-recursive implementation is derived. Using a proximal gradient step for lowering the computational cost, the proposed method may effectively cope with data sequences consisting of both stationary and non-stationary signals, such as transients, and/or amplitude modulated signals. Numerical examples illustrates the efficacy of the proposed method for both coherent Gaussian dictionaries and for the multi-pitch estimation problem.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"143 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Online group-sparse estimation using the covariance fitting criterion
In this paper, we present a time-recursive implementation of a recent hyperparameter-free group-sparse estimation technique. This is achieved by reformulating the original method, termed group-SPICE, as a square-root group-LASSO with a suitable regularization level, for which a time-recursive implementation is derived. Using a proximal gradient step for lowering the computational cost, the proposed method may effectively cope with data sequences consisting of both stationary and non-stationary signals, such as transients, and/or amplitude modulated signals. Numerical examples illustrates the efficacy of the proposed method for both coherent Gaussian dictionaries and for the multi-pitch estimation problem.