单调性约束控制问题的一个极大值原理

M. Hellwig
{"title":"单调性约束控制问题的一个极大值原理","authors":"M. Hellwig","doi":"10.2139/ssrn.1101438","DOIUrl":null,"url":null,"abstract":"The paper develops a version of Pontryagin's maximum principle for optimal control problems with monotonicity constraints on control variables. Whereas the literature handles such constraints by imposing an assumption of piecewise smoothness on the control variable and treating the slope of this variable as a new control variable subject to a nonnegativity constraint, the paper obtains the maximum principle without such an additional assumption. The result is useful for studying incentive problems with hidden characteristics when the type set is a continuum and preferences satisfy a single-crossing constraint.","PeriodicalId":247961,"journal":{"name":"Max Planck Institute for Research on Collective Goods Research Paper Series","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A Maximum Principle for Control Problems with Monotonicity Constraints\",\"authors\":\"M. Hellwig\",\"doi\":\"10.2139/ssrn.1101438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper develops a version of Pontryagin's maximum principle for optimal control problems with monotonicity constraints on control variables. Whereas the literature handles such constraints by imposing an assumption of piecewise smoothness on the control variable and treating the slope of this variable as a new control variable subject to a nonnegativity constraint, the paper obtains the maximum principle without such an additional assumption. The result is useful for studying incentive problems with hidden characteristics when the type set is a continuum and preferences satisfy a single-crossing constraint.\",\"PeriodicalId\":247961,\"journal\":{\"name\":\"Max Planck Institute for Research on Collective Goods Research Paper Series\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Max Planck Institute for Research on Collective Goods Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1101438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Max Planck Institute for Research on Collective Goods Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1101438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

对于控制变量具有单调性约束的最优控制问题,本文给出了庞特里亚金极大值原理的一个版本。虽然文献通过在控制变量上施加分段平滑假设并将该变量的斜率作为受非负性约束的新控制变量来处理此类约束,但本文在没有此类额外假设的情况下获得了最大值原则。研究结果对研究类型集为连续体且偏好满足单交叉约束时具有隐藏特征的激励问题具有指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Maximum Principle for Control Problems with Monotonicity Constraints
The paper develops a version of Pontryagin's maximum principle for optimal control problems with monotonicity constraints on control variables. Whereas the literature handles such constraints by imposing an assumption of piecewise smoothness on the control variable and treating the slope of this variable as a new control variable subject to a nonnegativity constraint, the paper obtains the maximum principle without such an additional assumption. The result is useful for studying incentive problems with hidden characteristics when the type set is a continuum and preferences satisfy a single-crossing constraint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信