印度尼西亚的失业率采用了时代系列的模型ARIMA和HOLT-WINTERS

Agus Sulaiman, Asep Juarna
{"title":"印度尼西亚的失业率采用了时代系列的模型ARIMA和HOLT-WINTERS","authors":"Agus Sulaiman, Asep Juarna","doi":"10.35760/ik.2021.v26i1.3512","DOIUrl":null,"url":null,"abstract":"Beberapa penyebab terjadinya pengangguran di Indonesia ialah, tingkat urbanisasi, tingkat industrialisasi, proporsi angkatan kerja SLTA dan upah minimum provinsi. Faktor-faktor tersebut turut serta mempengaruhi persentase data terkait tingkat pengangguran menjadi sedikit fluktuatif. Berdasarkan pergerakan persentase data tersebut, diperlukan sebuah prediksi untuk mengetahui persentase tingkat pengangguran di masa depan dengan menggunakan konsep peramalan. Pada penelitian ini, peneliti melakukan analisis peramalan time series menggunakan metode Box-Jenkins dengan model Autoregressive Integrated Moving Average (ARIMA) dan metode Exponential Smoothing dengan model Holt-Winters. Pada penelitian ini, peramalan dilakukan dengan menggunakan dataset tingkat pengangguran dari tahun 2005 hingga 2019 per 6 bulan antara Februari hingga Agustus. Peneliti akan melihat evaluasi Range Mean Square Error (RMSE) dan Mean Square Error (MSE) terkecil dari setiap model time series. Berdasarkan hasil penelitian, ARIMA(0,1,12) menjadi model yang terbaik untuk metode Box-Jenkins sedangkan Holt-Winters dengan alpha(mean) = 0.3 dan beta(trend) = 0.4 menjadi yang terbaik pada metode Exponential Smoothing. Pemilihan model terbaik dilanjutkan dengan perbandingan nilai akurasi RMSE dan MSE. Pada model ARIMA(0,1,12) nilai RMSE = 1.01 dan MSE = 1.0201, sedangkan model Holt-Winters menghasilkan nilai RMSE = 0.45 dan MSE = 0.2025. Berdasarkan data tersebut terpilih model Holt-Winters sebagai model terbaik untuk peramalan data tingkat pengangguran di Indonesia.","PeriodicalId":428168,"journal":{"name":"Jurnal Ilmiah Informatika Komputer","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"PERAMALAN TINGKAT PENGANGGURAN DI INDONESIA MENGGUNAKAN METODE TIME SERIES DENGAN MODEL ARIMA DAN HOLT-WINTERS\",\"authors\":\"Agus Sulaiman, Asep Juarna\",\"doi\":\"10.35760/ik.2021.v26i1.3512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beberapa penyebab terjadinya pengangguran di Indonesia ialah, tingkat urbanisasi, tingkat industrialisasi, proporsi angkatan kerja SLTA dan upah minimum provinsi. Faktor-faktor tersebut turut serta mempengaruhi persentase data terkait tingkat pengangguran menjadi sedikit fluktuatif. Berdasarkan pergerakan persentase data tersebut, diperlukan sebuah prediksi untuk mengetahui persentase tingkat pengangguran di masa depan dengan menggunakan konsep peramalan. Pada penelitian ini, peneliti melakukan analisis peramalan time series menggunakan metode Box-Jenkins dengan model Autoregressive Integrated Moving Average (ARIMA) dan metode Exponential Smoothing dengan model Holt-Winters. Pada penelitian ini, peramalan dilakukan dengan menggunakan dataset tingkat pengangguran dari tahun 2005 hingga 2019 per 6 bulan antara Februari hingga Agustus. Peneliti akan melihat evaluasi Range Mean Square Error (RMSE) dan Mean Square Error (MSE) terkecil dari setiap model time series. Berdasarkan hasil penelitian, ARIMA(0,1,12) menjadi model yang terbaik untuk metode Box-Jenkins sedangkan Holt-Winters dengan alpha(mean) = 0.3 dan beta(trend) = 0.4 menjadi yang terbaik pada metode Exponential Smoothing. Pemilihan model terbaik dilanjutkan dengan perbandingan nilai akurasi RMSE dan MSE. Pada model ARIMA(0,1,12) nilai RMSE = 1.01 dan MSE = 1.0201, sedangkan model Holt-Winters menghasilkan nilai RMSE = 0.45 dan MSE = 0.2025. Berdasarkan data tersebut terpilih model Holt-Winters sebagai model terbaik untuk peramalan data tingkat pengangguran di Indonesia.\",\"PeriodicalId\":428168,\"journal\":{\"name\":\"Jurnal Ilmiah Informatika Komputer\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Ilmiah Informatika Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35760/ik.2021.v26i1.3512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Informatika Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35760/ik.2021.v26i1.3512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

印尼一些失业的原因是,城市化、工业化水平和劳动力比例水平SLTA和省最低工资。这些因素以及相关数据比例是影响失业率变得有点波动。基于运动百分比数据,这需要一个知道失业率百分比的预测在未来用最先进的概念。在这项研究,研究人员使用方法进行时间系列分析命理学Box-Jenkins Autoregressive集成移动平均模型(ARIMA)和Exponential锤的方法,而不是Holt-Winters模型。使用数据集进行这项研究,命理学的失业率从2005年每6个月至2019年2月至8月。研究人员会看到太阳城广场均值误差(RMSE)评估和卑鄙的广场(MSE)中最小的错误时代每个模特大赛。根据研究结果,ARIMA模型(0,1,12)成为最好的方法Box-Jenkins而Holt-Winters阿尔法(平均值)= 0。3和贝塔(趋势)= 0 Exponential锤4是一个最好的方法。最好的模型进行比较选举RMSE准确性和MSE的价值。ARIMA模型(0,1,12)的RMSE值= 1。01 MSE = 1 . 0201,而Holt-Winters模型产生了价值RMSE = 0。45和MSE 2025 = 0。基于这些数据被选中模型Holt-Winters作为印度尼西亚最先进的失业率数据的最佳模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PERAMALAN TINGKAT PENGANGGURAN DI INDONESIA MENGGUNAKAN METODE TIME SERIES DENGAN MODEL ARIMA DAN HOLT-WINTERS
Beberapa penyebab terjadinya pengangguran di Indonesia ialah, tingkat urbanisasi, tingkat industrialisasi, proporsi angkatan kerja SLTA dan upah minimum provinsi. Faktor-faktor tersebut turut serta mempengaruhi persentase data terkait tingkat pengangguran menjadi sedikit fluktuatif. Berdasarkan pergerakan persentase data tersebut, diperlukan sebuah prediksi untuk mengetahui persentase tingkat pengangguran di masa depan dengan menggunakan konsep peramalan. Pada penelitian ini, peneliti melakukan analisis peramalan time series menggunakan metode Box-Jenkins dengan model Autoregressive Integrated Moving Average (ARIMA) dan metode Exponential Smoothing dengan model Holt-Winters. Pada penelitian ini, peramalan dilakukan dengan menggunakan dataset tingkat pengangguran dari tahun 2005 hingga 2019 per 6 bulan antara Februari hingga Agustus. Peneliti akan melihat evaluasi Range Mean Square Error (RMSE) dan Mean Square Error (MSE) terkecil dari setiap model time series. Berdasarkan hasil penelitian, ARIMA(0,1,12) menjadi model yang terbaik untuk metode Box-Jenkins sedangkan Holt-Winters dengan alpha(mean) = 0.3 dan beta(trend) = 0.4 menjadi yang terbaik pada metode Exponential Smoothing. Pemilihan model terbaik dilanjutkan dengan perbandingan nilai akurasi RMSE dan MSE. Pada model ARIMA(0,1,12) nilai RMSE = 1.01 dan MSE = 1.0201, sedangkan model Holt-Winters menghasilkan nilai RMSE = 0.45 dan MSE = 0.2025. Berdasarkan data tersebut terpilih model Holt-Winters sebagai model terbaik untuk peramalan data tingkat pengangguran di Indonesia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信