节省并行计算机启动时间的三角方法

H. Eissfeller, S. Muller
{"title":"节省并行计算机启动时间的三角方法","authors":"H. Eissfeller, S. Muller","doi":"10.1109/DMCC.1990.555436","DOIUrl":null,"url":null,"abstract":"We present a new parallel implementation of explicit time stepping methods for time dependent equations in one or two spatial dimensions. The aim is to minimize the number of data transfers, to get faster algorthms. In one spatial dimension, z explicit time steps on p processors using a grid of size n need O i t n / p ) arithmetical operations and O( z ) startup operations The triangle method also requires Oi t n / p 1 arithmetical operations but only O! z p / n ) startup operations. In two spatial dimensions, using a grid of size n n and given the same algorithm, the startup time of OCTI operations using the conventional approach is considerably reduced to O( T 6 / n 1 startup operations. All constants regarding the 0-notation are less than 5","PeriodicalId":204431,"journal":{"name":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"The Triangle Method for Saving Startup Time in Parallel Computers\",\"authors\":\"H. Eissfeller, S. Muller\",\"doi\":\"10.1109/DMCC.1990.555436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new parallel implementation of explicit time stepping methods for time dependent equations in one or two spatial dimensions. The aim is to minimize the number of data transfers, to get faster algorthms. In one spatial dimension, z explicit time steps on p processors using a grid of size n need O i t n / p ) arithmetical operations and O( z ) startup operations The triangle method also requires Oi t n / p 1 arithmetical operations but only O! z p / n ) startup operations. In two spatial dimensions, using a grid of size n n and given the same algorithm, the startup time of OCTI operations using the conventional approach is considerably reduced to O( T 6 / n 1 startup operations. All constants regarding the 0-notation are less than 5\",\"PeriodicalId\":204431,\"journal\":{\"name\":\"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMCC.1990.555436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1990.555436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了一种新的并行实现的显式时间步进方法的时间相关方程在一个或两个空间维度。其目的是最小化数据传输的数量,以获得更快的算法。在一个空间维度上,使用大小为n的网格的p个处理器上的z个显式时间步需要Oi (n / p)个算术运算和O(z)个启动运算。三角形方法也需要O t n / p个算术运算,但只需要O!zp / n)启动操作。在两个空间维度中,使用大小为n n的网格并给定相同的算法,使用传统方法的OCTI操作的启动时间大大减少到O(T 6 / n 1)启动操作。所有与0符号有关的常数都小于5
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Triangle Method for Saving Startup Time in Parallel Computers
We present a new parallel implementation of explicit time stepping methods for time dependent equations in one or two spatial dimensions. The aim is to minimize the number of data transfers, to get faster algorthms. In one spatial dimension, z explicit time steps on p processors using a grid of size n need O i t n / p ) arithmetical operations and O( z ) startup operations The triangle method also requires Oi t n / p 1 arithmetical operations but only O! z p / n ) startup operations. In two spatial dimensions, using a grid of size n n and given the same algorithm, the startup time of OCTI operations using the conventional approach is considerably reduced to O( T 6 / n 1 startup operations. All constants regarding the 0-notation are less than 5
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信