两阶段鹰策略的人工蜂群算法

Rui-min Jia, Deng-xu He
{"title":"两阶段鹰策略的人工蜂群算法","authors":"Rui-min Jia, Deng-xu He","doi":"10.1109/CIS.2013.11","DOIUrl":null,"url":null,"abstract":"Pointing at that Artificial Bee Colony Algorithm (ABC) has the defect of slow search speed and low precision, the article proposed an Improved Artificial Bee Colony Algorithm with Two-Eagle Strategy (ETABC) through using a kind of optimization method-Eagle Strategy, and proved the convergence of ETABC. The simulation results show that ETABC is more effective in solving optimization problems.","PeriodicalId":294223,"journal":{"name":"2013 Ninth International Conference on Computational Intelligence and Security","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Artificial Bee Colony Algorithm with Two-Stage Eagle Strategy\",\"authors\":\"Rui-min Jia, Deng-xu He\",\"doi\":\"10.1109/CIS.2013.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pointing at that Artificial Bee Colony Algorithm (ABC) has the defect of slow search speed and low precision, the article proposed an Improved Artificial Bee Colony Algorithm with Two-Eagle Strategy (ETABC) through using a kind of optimization method-Eagle Strategy, and proved the convergence of ETABC. The simulation results show that ETABC is more effective in solving optimization problems.\",\"PeriodicalId\":294223,\"journal\":{\"name\":\"2013 Ninth International Conference on Computational Intelligence and Security\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Ninth International Conference on Computational Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS.2013.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Ninth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2013.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对人工蜂群算法(Artificial Bee Colony Algorithm, ABC)存在搜索速度慢、精度低的缺陷,采用一种优化方法——鹰策略,提出了一种改进的双鹰策略人工蜂群算法(Two-Eagle Strategy, ETABC),并证明了ETABC的收敛性。仿真结果表明,ETABC算法在求解优化问题时更为有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial Bee Colony Algorithm with Two-Stage Eagle Strategy
Pointing at that Artificial Bee Colony Algorithm (ABC) has the defect of slow search speed and low precision, the article proposed an Improved Artificial Bee Colony Algorithm with Two-Eagle Strategy (ETABC) through using a kind of optimization method-Eagle Strategy, and proved the convergence of ETABC. The simulation results show that ETABC is more effective in solving optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信