利用深度学习方法进行深度伪造检测:综述

Aniruddha Tiwari, Rushit Dave, Mounika Vanamala
{"title":"利用深度学习方法进行深度伪造检测:综述","authors":"Aniruddha Tiwari, Rushit Dave, Mounika Vanamala","doi":"10.1145/3596947.3596959","DOIUrl":null,"url":null,"abstract":"Abstract— Conspicuous progression in the field of machine learning (ML) and deep learning (DL) have led the jump of highly realistic fake media, these media oftentimes referred as deepfakes. Deepfakes are fabricated media which are generated by sophisticated AI that are at times very difficult to set apart from the real media. So far, this media can be uploaded to the various social media platforms, hence advertising it to the world got easy, calling for an efficacious countermeasure. Thus, one of the optimistic counter steps against deepfake would be deepfake detection. To undertake this threat, researchers in the past have created models to detect deepfakes based on ML/DL techniques like Convolutional Neural Networks (CNN). This paper aims to explore different methodologies with an intention to achieve a cost-effective model with a higher accuracy with different types of the datasets, which is to address the generalizability of the dataset. ","PeriodicalId":183071,"journal":{"name":"Proceedings of the 2023 7th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Leveraging Deep Learning Approaches for Deepfake Detection: A Review\",\"authors\":\"Aniruddha Tiwari, Rushit Dave, Mounika Vanamala\",\"doi\":\"10.1145/3596947.3596959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract— Conspicuous progression in the field of machine learning (ML) and deep learning (DL) have led the jump of highly realistic fake media, these media oftentimes referred as deepfakes. Deepfakes are fabricated media which are generated by sophisticated AI that are at times very difficult to set apart from the real media. So far, this media can be uploaded to the various social media platforms, hence advertising it to the world got easy, calling for an efficacious countermeasure. Thus, one of the optimistic counter steps against deepfake would be deepfake detection. To undertake this threat, researchers in the past have created models to detect deepfakes based on ML/DL techniques like Convolutional Neural Networks (CNN). This paper aims to explore different methodologies with an intention to achieve a cost-effective model with a higher accuracy with different types of the datasets, which is to address the generalizability of the dataset. \",\"PeriodicalId\":183071,\"journal\":{\"name\":\"Proceedings of the 2023 7th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2023 7th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3596947.3596959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 7th International Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3596947.3596959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

摘要:机器学习(ML)和深度学习(DL)领域的显著进步导致了高度逼真的假媒体的飞跃,这些媒体通常被称为深度假。深度造假是由复杂的人工智能生成的虚假媒体,有时很难与真实媒体区分开来。到目前为止,这种媒体可以上传到各种社交媒体平台,因此很容易向世界宣传,呼吁采取有效的对策。因此,对抗deepfake的一个乐观的步骤是deepfake检测。为了应对这种威胁,研究人员过去已经创建了基于卷积神经网络(CNN)等ML/DL技术的模型来检测深度伪造。本文旨在探索不同的方法,以期在不同类型的数据集上实现具有更高精度的成本效益模型,从而解决数据集的可泛化性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Deep Learning Approaches for Deepfake Detection: A Review
Abstract— Conspicuous progression in the field of machine learning (ML) and deep learning (DL) have led the jump of highly realistic fake media, these media oftentimes referred as deepfakes. Deepfakes are fabricated media which are generated by sophisticated AI that are at times very difficult to set apart from the real media. So far, this media can be uploaded to the various social media platforms, hence advertising it to the world got easy, calling for an efficacious countermeasure. Thus, one of the optimistic counter steps against deepfake would be deepfake detection. To undertake this threat, researchers in the past have created models to detect deepfakes based on ML/DL techniques like Convolutional Neural Networks (CNN). This paper aims to explore different methodologies with an intention to achieve a cost-effective model with a higher accuracy with different types of the datasets, which is to address the generalizability of the dataset. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信