发现流船轨迹上的锚地和共同运动模式

A. Tritsarolis, Y. Kontoulis, N. Pelekis, Y. Theodoridis
{"title":"发现流船轨迹上的锚地和共同运动模式","authors":"A. Tritsarolis, Y. Kontoulis, N. Pelekis, Y. Theodoridis","doi":"10.1145/3469830.3470909","DOIUrl":null,"url":null,"abstract":"The massive-scale data generation of positioning (tracking) messages, collected by various surveillance means, has posed new challenges in the field of mobility data analytics in terms of extracting valuable knowledge out of this data. One of these challenges is online cluster analysis, where the goal is to unveil hidden patterns of collective behaviour from streaming trajectories, such as co-movement and co-stationary (aka anchorage) patterns. Towards this direction, in this paper, we demonstrate MaSEC (Moving and Stationary Evolving Clusters), a system that discovers valuable behavioural patterns as above. In particular, our system provides a unified solution that discovers both moving and stationary evolving clusters on streaming vessel position data in an online mode. The functionality of our system is evaluated over two real-world datasets from the maritime domain.","PeriodicalId":206910,"journal":{"name":"17th International Symposium on Spatial and Temporal Databases","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MaSEC: Discovering Anchorages and Co-movement Patterns on Streaming Vessel Trajectories\",\"authors\":\"A. Tritsarolis, Y. Kontoulis, N. Pelekis, Y. Theodoridis\",\"doi\":\"10.1145/3469830.3470909\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The massive-scale data generation of positioning (tracking) messages, collected by various surveillance means, has posed new challenges in the field of mobility data analytics in terms of extracting valuable knowledge out of this data. One of these challenges is online cluster analysis, where the goal is to unveil hidden patterns of collective behaviour from streaming trajectories, such as co-movement and co-stationary (aka anchorage) patterns. Towards this direction, in this paper, we demonstrate MaSEC (Moving and Stationary Evolving Clusters), a system that discovers valuable behavioural patterns as above. In particular, our system provides a unified solution that discovers both moving and stationary evolving clusters on streaming vessel position data in an online mode. The functionality of our system is evaluated over two real-world datasets from the maritime domain.\",\"PeriodicalId\":206910,\"journal\":{\"name\":\"17th International Symposium on Spatial and Temporal Databases\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"17th International Symposium on Spatial and Temporal Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3469830.3470909\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"17th International Symposium on Spatial and Temporal Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3469830.3470909","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过各种监控手段收集的定位(跟踪)信息的大规模数据生成,在从这些数据中提取有价值的知识方面,对移动数据分析领域提出了新的挑战。其中一个挑战是在线聚类分析,其目标是从流轨迹中揭示隐藏的集体行为模式,例如共同运动和共同静止(又名锚定)模式。朝着这个方向,在本文中,我们展示了MaSEC(移动和静止进化集群),一个发现上述有价值的行为模式的系统。特别是,我们的系统提供了一个统一的解决方案,可以在线模式发现流船位置数据的移动和静止演变集群。我们的系统的功能是在两个来自海洋领域的真实数据集上进行评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MaSEC: Discovering Anchorages and Co-movement Patterns on Streaming Vessel Trajectories
The massive-scale data generation of positioning (tracking) messages, collected by various surveillance means, has posed new challenges in the field of mobility data analytics in terms of extracting valuable knowledge out of this data. One of these challenges is online cluster analysis, where the goal is to unveil hidden patterns of collective behaviour from streaming trajectories, such as co-movement and co-stationary (aka anchorage) patterns. Towards this direction, in this paper, we demonstrate MaSEC (Moving and Stationary Evolving Clusters), a system that discovers valuable behavioural patterns as above. In particular, our system provides a unified solution that discovers both moving and stationary evolving clusters on streaming vessel position data in an online mode. The functionality of our system is evaluated over two real-world datasets from the maritime domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信