经典模型重访:随机利率和波动率期限结构的Black-Scholes和Heston

Alberto Bueno-Guerrero
{"title":"经典模型重访:随机利率和波动率期限结构的Black-Scholes和Heston","authors":"Alberto Bueno-Guerrero","doi":"10.2139/ssrn.3192823","DOIUrl":null,"url":null,"abstract":"We consider the Black and Scholes (1973) and Heston (1993) models and we generalize them to stochastic interest rates and maturity-dependent volatilities. In the Black-Scholes case we solve the extended model and provide a concrete form for the term structure of volatilities. In the Heston case we prove that, under some conditions, the generalized model is equivalent to a hybrid model and we find semi-closed-form solutions in the Hull and White (1990) and Cox et al. (1985) cases. \n \nWe address the problem of the consistency of the Black-Scholes model with the volatility surface and we show that, under general conditions, the Black-Scholes formula cannot be generalized to account for the volatility smile.","PeriodicalId":129812,"journal":{"name":"Financial Engineering eJournal","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the Classical Models: Black-Scholes and Heston With Stochastic Interest Rates and Term Structure of Volatilities\",\"authors\":\"Alberto Bueno-Guerrero\",\"doi\":\"10.2139/ssrn.3192823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Black and Scholes (1973) and Heston (1993) models and we generalize them to stochastic interest rates and maturity-dependent volatilities. In the Black-Scholes case we solve the extended model and provide a concrete form for the term structure of volatilities. In the Heston case we prove that, under some conditions, the generalized model is equivalent to a hybrid model and we find semi-closed-form solutions in the Hull and White (1990) and Cox et al. (1985) cases. \\n \\nWe address the problem of the consistency of the Black-Scholes model with the volatility surface and we show that, under general conditions, the Black-Scholes formula cannot be generalized to account for the volatility smile.\",\"PeriodicalId\":129812,\"journal\":{\"name\":\"Financial Engineering eJournal\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Financial Engineering eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3192823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3192823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑布莱克和斯科尔斯(1973)和赫斯顿(1993)模型,并将其推广到随机利率和到期依赖的波动率。在Black-Scholes案例中,我们求解了扩展模型,并提供了波动率期限结构的具体形式。在Heston案例中,我们证明了在某些条件下,广义模型等价于混合模型,并在Hull and White(1990)和Cox et al.(1985)案例中找到了半封闭形式的解。我们解决了Black-Scholes模型与波动面的一致性问题,并证明在一般条件下,Black-Scholes公式不能推广到波动面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting the Classical Models: Black-Scholes and Heston With Stochastic Interest Rates and Term Structure of Volatilities
We consider the Black and Scholes (1973) and Heston (1993) models and we generalize them to stochastic interest rates and maturity-dependent volatilities. In the Black-Scholes case we solve the extended model and provide a concrete form for the term structure of volatilities. In the Heston case we prove that, under some conditions, the generalized model is equivalent to a hybrid model and we find semi-closed-form solutions in the Hull and White (1990) and Cox et al. (1985) cases. We address the problem of the consistency of the Black-Scholes model with the volatility surface and we show that, under general conditions, the Black-Scholes formula cannot be generalized to account for the volatility smile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信