Lotfollah Jargani, M. Shahbazian, K. Salahshoor, V. Fathabadi
{"title":"非线性系统状态估计的自适应无嗅卡尔曼滤波","authors":"Lotfollah Jargani, M. Shahbazian, K. Salahshoor, V. Fathabadi","doi":"10.1109/ICET.2009.5353190","DOIUrl":null,"url":null,"abstract":"This paper investigates the application of multisensor data fusion (MSDF) technique to enhance the state estimation of a nonlinear plant. The proposed method is based on Kalman filters approach to improve the state estimation obtained by the novel adaptive unscented Kalman filter (AUKF). The common trend for the KF implementation assumes pre-specified fixed distribution matrices for both process and measurement noises. Here, however, the variance matrices for both process and measurement noise signals are assumed unknown a priori and thus incrementally estimated and updated using a sliding time window paradigm within which an estimation of the noise variance is calculated and adaptively updated each time the window is shifted forward. The proposed methodology is tested on a simulated continuous stirred tank reactor (CSTR) problem to estimate 4 states of this nonlinear plant. The simulation results demonstrate the superiority of the suggested method in state estimation compared with a previously reported approach.","PeriodicalId":307661,"journal":{"name":"2009 International Conference on Emerging Technologies","volume":"7 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"State estimation of nonlinear systems using novel adaptive unscented Kalman filter\",\"authors\":\"Lotfollah Jargani, M. Shahbazian, K. Salahshoor, V. Fathabadi\",\"doi\":\"10.1109/ICET.2009.5353190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the application of multisensor data fusion (MSDF) technique to enhance the state estimation of a nonlinear plant. The proposed method is based on Kalman filters approach to improve the state estimation obtained by the novel adaptive unscented Kalman filter (AUKF). The common trend for the KF implementation assumes pre-specified fixed distribution matrices for both process and measurement noises. Here, however, the variance matrices for both process and measurement noise signals are assumed unknown a priori and thus incrementally estimated and updated using a sliding time window paradigm within which an estimation of the noise variance is calculated and adaptively updated each time the window is shifted forward. The proposed methodology is tested on a simulated continuous stirred tank reactor (CSTR) problem to estimate 4 states of this nonlinear plant. The simulation results demonstrate the superiority of the suggested method in state estimation compared with a previously reported approach.\",\"PeriodicalId\":307661,\"journal\":{\"name\":\"2009 International Conference on Emerging Technologies\",\"volume\":\"7 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICET.2009.5353190\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2009.5353190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
State estimation of nonlinear systems using novel adaptive unscented Kalman filter
This paper investigates the application of multisensor data fusion (MSDF) technique to enhance the state estimation of a nonlinear plant. The proposed method is based on Kalman filters approach to improve the state estimation obtained by the novel adaptive unscented Kalman filter (AUKF). The common trend for the KF implementation assumes pre-specified fixed distribution matrices for both process and measurement noises. Here, however, the variance matrices for both process and measurement noise signals are assumed unknown a priori and thus incrementally estimated and updated using a sliding time window paradigm within which an estimation of the noise variance is calculated and adaptively updated each time the window is shifted forward. The proposed methodology is tested on a simulated continuous stirred tank reactor (CSTR) problem to estimate 4 states of this nonlinear plant. The simulation results demonstrate the superiority of the suggested method in state estimation compared with a previously reported approach.