用李氏度规求球体积的方法及其应用

Sagnik Bhattacharya, Adrish Banerjee
{"title":"用李氏度规求球体积的方法及其应用","authors":"Sagnik Bhattacharya, Adrish Banerjee","doi":"10.1109/ITA50056.2020.9244935","DOIUrl":null,"url":null,"abstract":"We develop general techniques to bound the size of the balls of a given radius r for q-ary discrete metrics, using the generating function for the metric and Sanov’s theorem, that reduces to the known bound in the case of the Hamming metric and gives us a new bound in the case of the Lee metric. We use the techniques developed to find Hamming, Elias-Bassalygo and Gilbert-Varshamov bounds for the Lee metric.","PeriodicalId":137257,"journal":{"name":"2020 Information Theory and Applications Workshop (ITA)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A method to find the volume of a sphere in the Lee metric, and its applications\",\"authors\":\"Sagnik Bhattacharya, Adrish Banerjee\",\"doi\":\"10.1109/ITA50056.2020.9244935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop general techniques to bound the size of the balls of a given radius r for q-ary discrete metrics, using the generating function for the metric and Sanov’s theorem, that reduces to the known bound in the case of the Hamming metric and gives us a new bound in the case of the Lee metric. We use the techniques developed to find Hamming, Elias-Bassalygo and Gilbert-Varshamov bounds for the Lee metric.\",\"PeriodicalId\":137257,\"journal\":{\"name\":\"2020 Information Theory and Applications Workshop (ITA)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Information Theory and Applications Workshop (ITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA50056.2020.9244935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Information Theory and Applications Workshop (ITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA50056.2020.9244935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一般的技术来限制给定半径r的球的大小对于q-ary离散度量,使用度规的生成函数和Sanov定理,在Hamming度规的情况下,它简化为已知的界限,并在Lee度规的情况下给出了一个新的界限。我们使用开发的技术来找到Lee度规的Hamming, Elias-Bassalygo和Gilbert-Varshamov界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A method to find the volume of a sphere in the Lee metric, and its applications
We develop general techniques to bound the size of the balls of a given radius r for q-ary discrete metrics, using the generating function for the metric and Sanov’s theorem, that reduces to the known bound in the case of the Hamming metric and gives us a new bound in the case of the Lee metric. We use the techniques developed to find Hamming, Elias-Bassalygo and Gilbert-Varshamov bounds for the Lee metric.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信