基于三维视觉的机器人操作研究进展

Huahua Lin
{"title":"基于三维视觉的机器人操作研究进展","authors":"Huahua Lin","doi":"10.1145/3415048.3416116","DOIUrl":null,"url":null,"abstract":"Grasping has long been studied in the field of robotics. In this paper, we divide the process of robotic grasp into sensing and control. In terms of sensing, 2D vision based sensing relies on accurate feature matching and object surface texture features, resulting in poor performance in the complex environment with occlusion. By contrast, some sensors based on 3D vision are more robust to noise. Processing point clouds in a deep learning method can achieve high accuracy as well as reducing the computation time compared with those using cost volume regularization. For the control part, the traditional trajectory motion methods are limited to generalization and grasping with high degrees of freedom. On the contrary, the methods of reinforcement learning can improve the grasping strategy in the continuous interaction with the environment. We propose some commonly used benchmarks and simulation platforms for simulation experiment using reinforcement learning.","PeriodicalId":122511,"journal":{"name":"Proceedings of the 2020 International Conference on Pattern Recognition and Intelligent Systems","volume":"41 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robotic Manipulation Based on 3D Vision: A Survey\",\"authors\":\"Huahua Lin\",\"doi\":\"10.1145/3415048.3416116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grasping has long been studied in the field of robotics. In this paper, we divide the process of robotic grasp into sensing and control. In terms of sensing, 2D vision based sensing relies on accurate feature matching and object surface texture features, resulting in poor performance in the complex environment with occlusion. By contrast, some sensors based on 3D vision are more robust to noise. Processing point clouds in a deep learning method can achieve high accuracy as well as reducing the computation time compared with those using cost volume regularization. For the control part, the traditional trajectory motion methods are limited to generalization and grasping with high degrees of freedom. On the contrary, the methods of reinforcement learning can improve the grasping strategy in the continuous interaction with the environment. We propose some commonly used benchmarks and simulation platforms for simulation experiment using reinforcement learning.\",\"PeriodicalId\":122511,\"journal\":{\"name\":\"Proceedings of the 2020 International Conference on Pattern Recognition and Intelligent Systems\",\"volume\":\"41 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 International Conference on Pattern Recognition and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3415048.3416116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 International Conference on Pattern Recognition and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3415048.3416116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

抓取一直是机器人领域的研究热点。本文将机器人的抓取过程分为感知和控制两个部分。在传感方面,基于2D视觉的传感依赖于精确的特征匹配和物体表面纹理特征,导致在有遮挡的复杂环境下性能较差。相比之下,一些基于3D视觉的传感器对噪声的鲁棒性更强。用深度学习方法处理点云,与使用代价体积正则化的方法相比,可以达到较高的精度,并且减少了计算时间。对于控制部分,传统的轨迹运动方法仅限于泛化和高自由度抓取。相反,强化学习的方法可以在与环境的持续交互中改善抓取策略。我们提出了一些常用的基准和仿真平台,用于强化学习的仿真实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robotic Manipulation Based on 3D Vision: A Survey
Grasping has long been studied in the field of robotics. In this paper, we divide the process of robotic grasp into sensing and control. In terms of sensing, 2D vision based sensing relies on accurate feature matching and object surface texture features, resulting in poor performance in the complex environment with occlusion. By contrast, some sensors based on 3D vision are more robust to noise. Processing point clouds in a deep learning method can achieve high accuracy as well as reducing the computation time compared with those using cost volume regularization. For the control part, the traditional trajectory motion methods are limited to generalization and grasping with high degrees of freedom. On the contrary, the methods of reinforcement learning can improve the grasping strategy in the continuous interaction with the environment. We propose some commonly used benchmarks and simulation platforms for simulation experiment using reinforcement learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信