{"title":"gcForest推理在多核CPU和FPGA上的性能评估","authors":"P. Manavar, Sharyu Vijay Mukhekar, M. Nambiar","doi":"10.1145/3564121.3564797","DOIUrl":null,"url":null,"abstract":"Decision forests have proved to be useful in machine learning tasks. gcForest is a model that leverages ensembles of decision forests for classification. It combines several decision forests and by adding properties and layered architecture in such a way that it has been proven to give competitive results compared to convolutional neural networks. This paper analyzes the performance of a gcForest model trained on the MNIST digit classification data set on a multi-core CPU based system. Using a performance model-based approach it also presents an analysis of performance on a well-endowed FPGA accelerator card for the same model. It is concluded that the multi-core CPU system can deliver more throughput than the FPGA with batched workload, while the FPGA offers lower latency for a single inference. We also analyze the scalability of the gcForest model on the multi-core server system and with the help of experiments and models, uncover ways to improve the scalability.","PeriodicalId":166150,"journal":{"name":"Proceedings of the Second International Conference on AI-ML Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Evaluation of gcForest inferencing on multi-core CPU and FPGA\",\"authors\":\"P. Manavar, Sharyu Vijay Mukhekar, M. Nambiar\",\"doi\":\"10.1145/3564121.3564797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decision forests have proved to be useful in machine learning tasks. gcForest is a model that leverages ensembles of decision forests for classification. It combines several decision forests and by adding properties and layered architecture in such a way that it has been proven to give competitive results compared to convolutional neural networks. This paper analyzes the performance of a gcForest model trained on the MNIST digit classification data set on a multi-core CPU based system. Using a performance model-based approach it also presents an analysis of performance on a well-endowed FPGA accelerator card for the same model. It is concluded that the multi-core CPU system can deliver more throughput than the FPGA with batched workload, while the FPGA offers lower latency for a single inference. We also analyze the scalability of the gcForest model on the multi-core server system and with the help of experiments and models, uncover ways to improve the scalability.\",\"PeriodicalId\":166150,\"journal\":{\"name\":\"Proceedings of the Second International Conference on AI-ML Systems\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second International Conference on AI-ML Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3564121.3564797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second International Conference on AI-ML Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3564121.3564797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance Evaluation of gcForest inferencing on multi-core CPU and FPGA
Decision forests have proved to be useful in machine learning tasks. gcForest is a model that leverages ensembles of decision forests for classification. It combines several decision forests and by adding properties and layered architecture in such a way that it has been proven to give competitive results compared to convolutional neural networks. This paper analyzes the performance of a gcForest model trained on the MNIST digit classification data set on a multi-core CPU based system. Using a performance model-based approach it also presents an analysis of performance on a well-endowed FPGA accelerator card for the same model. It is concluded that the multi-core CPU system can deliver more throughput than the FPGA with batched workload, while the FPGA offers lower latency for a single inference. We also analyze the scalability of the gcForest model on the multi-core server system and with the help of experiments and models, uncover ways to improve the scalability.