面向推荐系统的产品视觉和功能特征建模(扩展摘要)

Bin Wu, Xiangnan He, Yu Chen, Liqiang Nie, Kai Zheng, Yangdong Ye
{"title":"面向推荐系统的产品视觉和功能特征建模(扩展摘要)","authors":"Bin Wu, Xiangnan He, Yu Chen, Liqiang Nie, Kai Zheng, Yangdong Ye","doi":"10.1109/ICDE55515.2023.00345","DOIUrl":null,"url":null,"abstract":"Recommender systems aim at helping users to discover interesting items and assisting business owners to obtain more profits. Nonetheless, traditional recommendations fail to explore the varying importance of product characteristics for different product domains. In light of this, we propose a novel probabilistic model for recommendation, which could learn products’ characteristics in a fine-grained manner. Specifically, a user’s preference for a given product is modeled as a combination of visual and functional aspects. To make our method practical in large-scale industrial scenarios, we devise a computationally efficient learning algorithm to optimize VFPMF’s parameters. Experiments on four real-world datasets demonstrate the effectiveness and efficiency of our solution, compared with several state-of-the-art methods.","PeriodicalId":434744,"journal":{"name":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling Product’s Visual and Functional Characteristics for Recommender Systems (Extended Abstract)\",\"authors\":\"Bin Wu, Xiangnan He, Yu Chen, Liqiang Nie, Kai Zheng, Yangdong Ye\",\"doi\":\"10.1109/ICDE55515.2023.00345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommender systems aim at helping users to discover interesting items and assisting business owners to obtain more profits. Nonetheless, traditional recommendations fail to explore the varying importance of product characteristics for different product domains. In light of this, we propose a novel probabilistic model for recommendation, which could learn products’ characteristics in a fine-grained manner. Specifically, a user’s preference for a given product is modeled as a combination of visual and functional aspects. To make our method practical in large-scale industrial scenarios, we devise a computationally efficient learning algorithm to optimize VFPMF’s parameters. Experiments on four real-world datasets demonstrate the effectiveness and efficiency of our solution, compared with several state-of-the-art methods.\",\"PeriodicalId\":434744,\"journal\":{\"name\":\"2023 IEEE 39th International Conference on Data Engineering (ICDE)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 39th International Conference on Data Engineering (ICDE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE55515.2023.00345\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 39th International Conference on Data Engineering (ICDE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE55515.2023.00345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

推荐系统的目的是帮助用户发现感兴趣的物品,帮助企业主获得更多的利润。然而,传统的建议未能探索不同产品领域的产品特性的不同重要性。鉴于此,我们提出了一种新的推荐概率模型,该模型可以细粒度地学习产品的特征。具体来说,用户对给定产品的偏好被建模为视觉和功能方面的组合。为了使我们的方法适用于大规模工业场景,我们设计了一个计算效率高的学习算法来优化VFPMF的参数。与几种最先进的方法相比,在四个真实数据集上的实验证明了我们的解决方案的有效性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Product’s Visual and Functional Characteristics for Recommender Systems (Extended Abstract)
Recommender systems aim at helping users to discover interesting items and assisting business owners to obtain more profits. Nonetheless, traditional recommendations fail to explore the varying importance of product characteristics for different product domains. In light of this, we propose a novel probabilistic model for recommendation, which could learn products’ characteristics in a fine-grained manner. Specifically, a user’s preference for a given product is modeled as a combination of visual and functional aspects. To make our method practical in large-scale industrial scenarios, we devise a computationally efficient learning algorithm to optimize VFPMF’s parameters. Experiments on four real-world datasets demonstrate the effectiveness and efficiency of our solution, compared with several state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信