视频中语义概念建模的判别域

Ming-yu Chen, Alexander Hauptmann
{"title":"视频中语义概念建模的判别域","authors":"Ming-yu Chen, Alexander Hauptmann","doi":"10.5555/1931390.1931406","DOIUrl":null,"url":null,"abstract":"A current trend in video analysis research hypothesizes that a very large number of semantic concepts could provide a novel way to characterize, retrieve and understand video. These semantic concepts do not appear in isolatation to each other and thus it could be very useful to exploit the relationships between multiple semantic concepts to enhance the concept detection performance in video. In this paper we present a discriminative learning framework called Multi-concept Discriminative Random Field (MDRF) for building probabilistic models of video semantic concept detectors by incorporating related concepts as well as the low-level observations. The proposed model exploits the power of discriminative graphical models to simultaneously capture the associations of concept with observed data and the interactions between related concepts. Compared with previous methods, this model not only captures the co-occurrence between concepts but also incorporates the raw data observations into a unified framework. We also present an approximate parameter estimation algorithm and apply it to the TRECVID 2005 data. Our experiments show promising results compared to the single concept learning approach for semantic concept detection in video.","PeriodicalId":120472,"journal":{"name":"RIAO Conference","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Discriminative Fields for Modeling Semantic Concepts in Video\",\"authors\":\"Ming-yu Chen, Alexander Hauptmann\",\"doi\":\"10.5555/1931390.1931406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A current trend in video analysis research hypothesizes that a very large number of semantic concepts could provide a novel way to characterize, retrieve and understand video. These semantic concepts do not appear in isolatation to each other and thus it could be very useful to exploit the relationships between multiple semantic concepts to enhance the concept detection performance in video. In this paper we present a discriminative learning framework called Multi-concept Discriminative Random Field (MDRF) for building probabilistic models of video semantic concept detectors by incorporating related concepts as well as the low-level observations. The proposed model exploits the power of discriminative graphical models to simultaneously capture the associations of concept with observed data and the interactions between related concepts. Compared with previous methods, this model not only captures the co-occurrence between concepts but also incorporates the raw data observations into a unified framework. We also present an approximate parameter estimation algorithm and apply it to the TRECVID 2005 data. Our experiments show promising results compared to the single concept learning approach for semantic concept detection in video.\",\"PeriodicalId\":120472,\"journal\":{\"name\":\"RIAO Conference\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RIAO Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/1931390.1931406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RIAO Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/1931390.1931406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

当前视频分析研究的一个趋势是假设大量的语义概念可以提供一种新的方式来表征、检索和理解视频。这些语义概念不是孤立出现的,因此利用多个语义概念之间的关系来提高视频中的概念检测性能是非常有用的。在本文中,我们提出了一个判别学习框架,称为多概念判别随机场(MDRF),用于通过合并相关概念以及低级观察来构建视频语义概念检测器的概率模型。该模型利用判别图形模型的能力,同时捕捉概念与观测数据之间的关联以及相关概念之间的相互作用。与以往的方法相比,该模型不仅捕获了概念之间的共现性,而且将原始数据观测结果整合到一个统一的框架中。我们还提出了一种近似参数估计算法,并将其应用于TRECVID 2005数据。与单一概念学习方法相比,我们的实验显示了视频语义概念检测的良好结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminative Fields for Modeling Semantic Concepts in Video
A current trend in video analysis research hypothesizes that a very large number of semantic concepts could provide a novel way to characterize, retrieve and understand video. These semantic concepts do not appear in isolatation to each other and thus it could be very useful to exploit the relationships between multiple semantic concepts to enhance the concept detection performance in video. In this paper we present a discriminative learning framework called Multi-concept Discriminative Random Field (MDRF) for building probabilistic models of video semantic concept detectors by incorporating related concepts as well as the low-level observations. The proposed model exploits the power of discriminative graphical models to simultaneously capture the associations of concept with observed data and the interactions between related concepts. Compared with previous methods, this model not only captures the co-occurrence between concepts but also incorporates the raw data observations into a unified framework. We also present an approximate parameter estimation algorithm and apply it to the TRECVID 2005 data. Our experiments show promising results compared to the single concept learning approach for semantic concept detection in video.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信