数据隐私算法中的敏感性支持

Geocey Shejy, Pallavi Chavan
{"title":"数据隐私算法中的敏感性支持","authors":"Geocey Shejy, Pallavi Chavan","doi":"10.1109/ASIANCON55314.2022.9909096","DOIUrl":null,"url":null,"abstract":"Personal data privacy is a great concern by governments across the world as citizens generate huge amount of data continuously and industries using this for betterment of user centric services. There must be a reasonable balance between data privacy and utility of data. Differential privacy is a promise by data collector to the customer’s personal privacy. Centralised Differential Privacy (CDP) is performing output perturbation of user’s data by applying required privacy budget. This promises the inclusion or exclusion of individual’s data in data set not going to create significant change for a statistical query output and it offers -Differential privacy guarantee. CDP is holding a strong belief on trusted data collector and applying global sensitivity of the data. Local Differential Privacy (LDP) helps user to locally perturb his data and there by guaranteeing privacy even with untrusted data collector. Many differential privacy algorithms handles parameters like privacy budget, sensitivity and data utility in different ways and mostly trying to keep trade-off between privacy and utility of data. This paper evaluates differential privacy algorithms in regard to the privacy support it offers according to the sensitivity of the data. Generalized application of privacy budget is found ineffective in comparison to the sensitivity based usage of privacy budget.","PeriodicalId":429704,"journal":{"name":"2022 2nd Asian Conference on Innovation in Technology (ASIANCON)","volume":"41 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity Support in Data Privacy Algorithms\",\"authors\":\"Geocey Shejy, Pallavi Chavan\",\"doi\":\"10.1109/ASIANCON55314.2022.9909096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personal data privacy is a great concern by governments across the world as citizens generate huge amount of data continuously and industries using this for betterment of user centric services. There must be a reasonable balance between data privacy and utility of data. Differential privacy is a promise by data collector to the customer’s personal privacy. Centralised Differential Privacy (CDP) is performing output perturbation of user’s data by applying required privacy budget. This promises the inclusion or exclusion of individual’s data in data set not going to create significant change for a statistical query output and it offers -Differential privacy guarantee. CDP is holding a strong belief on trusted data collector and applying global sensitivity of the data. Local Differential Privacy (LDP) helps user to locally perturb his data and there by guaranteeing privacy even with untrusted data collector. Many differential privacy algorithms handles parameters like privacy budget, sensitivity and data utility in different ways and mostly trying to keep trade-off between privacy and utility of data. This paper evaluates differential privacy algorithms in regard to the privacy support it offers according to the sensitivity of the data. Generalized application of privacy budget is found ineffective in comparison to the sensitivity based usage of privacy budget.\",\"PeriodicalId\":429704,\"journal\":{\"name\":\"2022 2nd Asian Conference on Innovation in Technology (ASIANCON)\",\"volume\":\"41 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 2nd Asian Conference on Innovation in Technology (ASIANCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASIANCON55314.2022.9909096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd Asian Conference on Innovation in Technology (ASIANCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASIANCON55314.2022.9909096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

个人数据隐私是世界各国政府非常关注的问题,因为公民不断产生大量数据,行业利用这些数据来改善以用户为中心的服务。在数据隐私和数据效用之间必须有一个合理的平衡。差异隐私是数据采集器对客户个人隐私的承诺。集中式差分隐私(CDP)通过应用所需的隐私预算对用户数据进行输出扰动。这保证了数据集中个人数据的包含或排除不会对统计查询输出产生重大变化,并且它提供了-差分隐私保证。CDP对可信赖的数据收集者有着强烈的信念,并应用数据的全局敏感性。本地差分隐私(LDP)通过在不受信任的数据收集器上保证隐私,帮助用户在本地扰动他的数据。许多差分隐私算法以不同的方式处理隐私预算、敏感性和数据效用等参数,并试图在隐私和数据效用之间保持平衡。本文根据数据的敏感性对差分隐私算法提供的隐私支持进行了评价。与基于敏感性的隐私预算使用相比,发现隐私预算的广义应用是无效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitivity Support in Data Privacy Algorithms
Personal data privacy is a great concern by governments across the world as citizens generate huge amount of data continuously and industries using this for betterment of user centric services. There must be a reasonable balance between data privacy and utility of data. Differential privacy is a promise by data collector to the customer’s personal privacy. Centralised Differential Privacy (CDP) is performing output perturbation of user’s data by applying required privacy budget. This promises the inclusion or exclusion of individual’s data in data set not going to create significant change for a statistical query output and it offers -Differential privacy guarantee. CDP is holding a strong belief on trusted data collector and applying global sensitivity of the data. Local Differential Privacy (LDP) helps user to locally perturb his data and there by guaranteeing privacy even with untrusted data collector. Many differential privacy algorithms handles parameters like privacy budget, sensitivity and data utility in different ways and mostly trying to keep trade-off between privacy and utility of data. This paper evaluates differential privacy algorithms in regard to the privacy support it offers according to the sensitivity of the data. Generalized application of privacy budget is found ineffective in comparison to the sensitivity based usage of privacy budget.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信