使用高分辨率CT扫描自动检测结肠息肉

J. Dehmeshki, H. Amin, Wing Wong, M. E. Dehkordi, N. Kamangari, M. Roddie, J. Costelo
{"title":"使用高分辨率CT扫描自动检测结肠息肉","authors":"J. Dehmeshki, H. Amin, Wing Wong, M. E. Dehkordi, N. Kamangari, M. Roddie, J. Costelo","doi":"10.1109/ISPA.2003.1296962","DOIUrl":null,"url":null,"abstract":"Automatic detection of polyps can be a valuable tool for diagnoses of early colorectal cancer as early detection and hence removal of polyps can save life. Polyp detection is a challenging task as polyps come in different sizes and shapes. The detection generally consists of three stages: 1) colon segmentation, 2) identification of suspected polyps and 3) polyp classification. The latter involves classifying polyps from among many suspected regions. This paper concentrates on the first two stages of the detection. For the colon segmentation, the fuzzy connectivity region growing technique is used while for the identification of suspected polyps concave region searching is applied. The method is fast, robust and validated with a number of high-resolution colon datasets.","PeriodicalId":218932,"journal":{"name":"3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic polyp detection of colon using high resolution CT scans\",\"authors\":\"J. Dehmeshki, H. Amin, Wing Wong, M. E. Dehkordi, N. Kamangari, M. Roddie, J. Costelo\",\"doi\":\"10.1109/ISPA.2003.1296962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic detection of polyps can be a valuable tool for diagnoses of early colorectal cancer as early detection and hence removal of polyps can save life. Polyp detection is a challenging task as polyps come in different sizes and shapes. The detection generally consists of three stages: 1) colon segmentation, 2) identification of suspected polyps and 3) polyp classification. The latter involves classifying polyps from among many suspected regions. This paper concentrates on the first two stages of the detection. For the colon segmentation, the fuzzy connectivity region growing technique is used while for the identification of suspected polyps concave region searching is applied. The method is fast, robust and validated with a number of high-resolution colon datasets.\",\"PeriodicalId\":218932,\"journal\":{\"name\":\"3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2003.1296962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Symposium on Image and Signal Processing and Analysis, 2003. ISPA 2003. Proceedings of the","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2003.1296962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

息肉的自动检测是诊断早期结直肠癌的一种有价值的工具,因为早期发现和切除息肉可以挽救生命。息肉检测是一项具有挑战性的任务,因为息肉有不同的大小和形状。检测一般包括三个阶段:1)结肠分割,2)疑似息肉的识别,3)息肉分类。后者涉及从许多可疑区域中对息肉进行分类。本文主要研究检测的前两个阶段。对于结肠的分割,采用模糊连通性区域增长技术,对于可疑息肉的识别,采用凹区域搜索技术。该方法快速、稳健,并通过大量高分辨率冒号数据集进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic polyp detection of colon using high resolution CT scans
Automatic detection of polyps can be a valuable tool for diagnoses of early colorectal cancer as early detection and hence removal of polyps can save life. Polyp detection is a challenging task as polyps come in different sizes and shapes. The detection generally consists of three stages: 1) colon segmentation, 2) identification of suspected polyps and 3) polyp classification. The latter involves classifying polyps from among many suspected regions. This paper concentrates on the first two stages of the detection. For the colon segmentation, the fuzzy connectivity region growing technique is used while for the identification of suspected polyps concave region searching is applied. The method is fast, robust and validated with a number of high-resolution colon datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信