修剪布尔表达式以缩短动态切片

Thomas Hirsch, Birgit Hofer
{"title":"修剪布尔表达式以缩短动态切片","authors":"Thomas Hirsch, Birgit Hofer","doi":"10.1109/SCAM55253.2022.00006","DOIUrl":null,"url":null,"abstract":"This paper presents a novel extension to dynamic slicing that we call pruned slicing. The proposed slicing approach produces smaller slices than traditional dynamic slicing. This is achieved by reasoning over Boolean expressions. We have implemented a prototype in Python and empirically evaluated its performance on three different benchmarks: TCAS, QuixBugs and the Refactory dataset. We show that pruned slicing reduces the size of dynamic slices on average by 10.96 percent for TCAS. For QuixBugs and the Refactory dataset, the slice size remains the same, but the number of Boolean expressions within the slice is reduced. Further, the empirical evaluation shows that pruned dynamic slicing comes with a low computational overhead compared to dynamic slicing. Pruned slicing can also be used in combination with relevant slicing.","PeriodicalId":138287,"journal":{"name":"2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation (SCAM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pruning Boolean Expressions to Shorten Dynamic Slices\",\"authors\":\"Thomas Hirsch, Birgit Hofer\",\"doi\":\"10.1109/SCAM55253.2022.00006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel extension to dynamic slicing that we call pruned slicing. The proposed slicing approach produces smaller slices than traditional dynamic slicing. This is achieved by reasoning over Boolean expressions. We have implemented a prototype in Python and empirically evaluated its performance on three different benchmarks: TCAS, QuixBugs and the Refactory dataset. We show that pruned slicing reduces the size of dynamic slices on average by 10.96 percent for TCAS. For QuixBugs and the Refactory dataset, the slice size remains the same, but the number of Boolean expressions within the slice is reduced. Further, the empirical evaluation shows that pruned dynamic slicing comes with a low computational overhead compared to dynamic slicing. Pruned slicing can also be used in combination with relevant slicing.\",\"PeriodicalId\":138287,\"journal\":{\"name\":\"2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation (SCAM)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation (SCAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCAM55253.2022.00006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Working Conference on Source Code Analysis and Manipulation (SCAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCAM55253.2022.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了动态切片的一种新的扩展,我们称之为剪枝切片。所提出的切片方法比传统的动态切片产生更小的切片。这是通过对布尔表达式进行推理实现的。我们用Python实现了一个原型,并在三个不同的基准测试上对其性能进行了实证评估:TCAS、QuixBugs和Refactory数据集。研究表明,对于TCAS,剪枝切片平均减少了10.96%的动态切片大小。对于QuixBugs和Refactory数据集,切片大小保持不变,但是切片中的布尔表达式的数量减少了。此外,经验评估表明,与动态切片相比,剪枝动态切片具有较低的计算开销。剪枝切片也可以与相关切片结合使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pruning Boolean Expressions to Shorten Dynamic Slices
This paper presents a novel extension to dynamic slicing that we call pruned slicing. The proposed slicing approach produces smaller slices than traditional dynamic slicing. This is achieved by reasoning over Boolean expressions. We have implemented a prototype in Python and empirically evaluated its performance on three different benchmarks: TCAS, QuixBugs and the Refactory dataset. We show that pruned slicing reduces the size of dynamic slices on average by 10.96 percent for TCAS. For QuixBugs and the Refactory dataset, the slice size remains the same, but the number of Boolean expressions within the slice is reduced. Further, the empirical evaluation shows that pruned dynamic slicing comes with a low computational overhead compared to dynamic slicing. Pruned slicing can also be used in combination with relevant slicing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信