从社交媒体文本预测个性

J. Golbeck
{"title":"从社交媒体文本预测个性","authors":"J. Golbeck","doi":"10.17705/1ATRR.00009","DOIUrl":null,"url":null,"abstract":": This paper replicates text-based Big Five personality score predictions generated by the Receptiviti API—a tool built on and tied to the popular psycholinguistic analysis tool Linguistic Inquiry and Word Count (LIWC). We use four social media datasets with posts and personality scores for nearly 9,000 users to determine the accuracy of the Receptiviti predictions. We found Mean Absolute Error rates in the 15–30% range, which is a higher error rate than other personality prediction algorithms in the literature. Preliminary analysis suggests relative scores between groups of subjects may be maintained, which may be sufficient for many applications.","PeriodicalId":146711,"journal":{"name":"AIS Trans. Replication Res.","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Predicting Personality from Social Media Text\",\"authors\":\"J. Golbeck\",\"doi\":\"10.17705/1ATRR.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This paper replicates text-based Big Five personality score predictions generated by the Receptiviti API—a tool built on and tied to the popular psycholinguistic analysis tool Linguistic Inquiry and Word Count (LIWC). We use four social media datasets with posts and personality scores for nearly 9,000 users to determine the accuracy of the Receptiviti predictions. We found Mean Absolute Error rates in the 15–30% range, which is a higher error rate than other personality prediction algorithms in the literature. Preliminary analysis suggests relative scores between groups of subjects may be maintained, which may be sufficient for many applications.\",\"PeriodicalId\":146711,\"journal\":{\"name\":\"AIS Trans. Replication Res.\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIS Trans. Replication Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17705/1ATRR.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIS Trans. Replication Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17705/1ATRR.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

本文复制了基于文本的大五人格评分预测,该预测是由receitiviti api生成的,该api是建立在流行的心理语言学分析工具语言调查和单词计数(LIWC)之上并与之相连的工具。我们使用了四个社交媒体数据集,其中包含近9000名用户的帖子和个性评分,以确定receitiviti预测的准确性。我们发现平均绝对错误率在15-30%的范围内,这是比文献中其他人格预测算法更高的错误率。初步分析表明,各组科目之间的相对分数可能保持不变,这可能足以用于许多应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Personality from Social Media Text
: This paper replicates text-based Big Five personality score predictions generated by the Receptiviti API—a tool built on and tied to the popular psycholinguistic analysis tool Linguistic Inquiry and Word Count (LIWC). We use four social media datasets with posts and personality scores for nearly 9,000 users to determine the accuracy of the Receptiviti predictions. We found Mean Absolute Error rates in the 15–30% range, which is a higher error rate than other personality prediction algorithms in the literature. Preliminary analysis suggests relative scores between groups of subjects may be maintained, which may be sufficient for many applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信