Andrew C. Freeman, Christopher P. Burgess, Ketan Mayer-Patel
{"title":"集成事件摄像机的运动分割与跟踪","authors":"Andrew C. Freeman, Christopher P. Burgess, Ketan Mayer-Patel","doi":"10.1145/3458305.3463373","DOIUrl":null,"url":null,"abstract":"Integrating event cameras are asynchronous sensors wherein incident light values may be measured directly through continuous integration, with individual pixels' light sensitivity being adjustable in real time, allowing for extremely high frame rate and high dynamic range video capture. This paper builds on lessons learned with previous attempts to compress event data and presents a new scheme for event compression that has many analogues to traditional framed video compression techniques. We show how traditional video can be transcoded to an event-based representation, and describe the direct encoding of motion data in our event-based representation. Finally, we present experimental results proving how our simple scheme already approaches the state-of-the-art compression performance for slow-motion object tracking. This system introduces an application \"in the loop\" framework, where the application dynamically informs the camera how sensitive each pixel should be, based on the efficacy of the most recent data received.","PeriodicalId":138399,"journal":{"name":"Proceedings of the 12th ACM Multimedia Systems Conference","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Motion segmentation and tracking for integrating event cameras\",\"authors\":\"Andrew C. Freeman, Christopher P. Burgess, Ketan Mayer-Patel\",\"doi\":\"10.1145/3458305.3463373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating event cameras are asynchronous sensors wherein incident light values may be measured directly through continuous integration, with individual pixels' light sensitivity being adjustable in real time, allowing for extremely high frame rate and high dynamic range video capture. This paper builds on lessons learned with previous attempts to compress event data and presents a new scheme for event compression that has many analogues to traditional framed video compression techniques. We show how traditional video can be transcoded to an event-based representation, and describe the direct encoding of motion data in our event-based representation. Finally, we present experimental results proving how our simple scheme already approaches the state-of-the-art compression performance for slow-motion object tracking. This system introduces an application \\\"in the loop\\\" framework, where the application dynamically informs the camera how sensitive each pixel should be, based on the efficacy of the most recent data received.\",\"PeriodicalId\":138399,\"journal\":{\"name\":\"Proceedings of the 12th ACM Multimedia Systems Conference\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th ACM Multimedia Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3458305.3463373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th ACM Multimedia Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3458305.3463373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Motion segmentation and tracking for integrating event cameras
Integrating event cameras are asynchronous sensors wherein incident light values may be measured directly through continuous integration, with individual pixels' light sensitivity being adjustable in real time, allowing for extremely high frame rate and high dynamic range video capture. This paper builds on lessons learned with previous attempts to compress event data and presents a new scheme for event compression that has many analogues to traditional framed video compression techniques. We show how traditional video can be transcoded to an event-based representation, and describe the direct encoding of motion data in our event-based representation. Finally, we present experimental results proving how our simple scheme already approaches the state-of-the-art compression performance for slow-motion object tracking. This system introduces an application "in the loop" framework, where the application dynamically informs the camera how sensitive each pixel should be, based on the efficacy of the most recent data received.