基于边际理论的过采样方法

Zongtang Zhang, Zhe Chen, Weiguo Dai, Yusheng Cheng
{"title":"基于边际理论的过采样方法","authors":"Zongtang Zhang, Zhe Chen, Weiguo Dai, Yusheng Cheng","doi":"10.1145/3318299.3318337","DOIUrl":null,"url":null,"abstract":"Imbalanced data widely exists in real life, while the traditional classification method usually takes accuracy as the classification criterion, which is not suitable for the classification of imbalanced data. Resampling is an important method to deal with imbalanced data classification. In this paper, a margin based random over-sampling (MRO) method is proposed, and then MROBoost algorithm is proposed by combining the AdaBoost algorithm. Experimental results on the UCI dataset show that the MROBoost algorithm is superior to AdaBoost for imbalanced data classification problem.","PeriodicalId":164987,"journal":{"name":"International Conference on Machine Learning and Computing","volume":"11 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Over-sampling Method Based on Margin Theory\",\"authors\":\"Zongtang Zhang, Zhe Chen, Weiguo Dai, Yusheng Cheng\",\"doi\":\"10.1145/3318299.3318337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Imbalanced data widely exists in real life, while the traditional classification method usually takes accuracy as the classification criterion, which is not suitable for the classification of imbalanced data. Resampling is an important method to deal with imbalanced data classification. In this paper, a margin based random over-sampling (MRO) method is proposed, and then MROBoost algorithm is proposed by combining the AdaBoost algorithm. Experimental results on the UCI dataset show that the MROBoost algorithm is superior to AdaBoost for imbalanced data classification problem.\",\"PeriodicalId\":164987,\"journal\":{\"name\":\"International Conference on Machine Learning and Computing\",\"volume\":\"11 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3318299.3318337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318299.3318337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

不平衡数据在现实生活中广泛存在,传统的分类方法通常以准确性为分类标准,不适合对不平衡数据进行分类。重采样是处理不平衡数据分类的重要方法。本文首先提出了一种基于边际的随机过采样(MRO)方法,然后结合AdaBoost算法提出了MROBoost算法。在UCI数据集上的实验结果表明,MROBoost算法在不平衡数据分类问题上优于AdaBoost算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Over-sampling Method Based on Margin Theory
Imbalanced data widely exists in real life, while the traditional classification method usually takes accuracy as the classification criterion, which is not suitable for the classification of imbalanced data. Resampling is an important method to deal with imbalanced data classification. In this paper, a margin based random over-sampling (MRO) method is proposed, and then MROBoost algorithm is proposed by combining the AdaBoost algorithm. Experimental results on the UCI dataset show that the MROBoost algorithm is superior to AdaBoost for imbalanced data classification problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信