柔性关节单连杆机器人的人工神经网络辨识与跟踪控制

H. Kim, J. Parker
{"title":"柔性关节单连杆机器人的人工神经网络辨识与跟踪控制","authors":"H. Kim, J. Parker","doi":"10.1109/SSST.1993.522777","DOIUrl":null,"url":null,"abstract":"An artificial neural network for identification and tracking control of a nonlinear flexible joint robot with model reference adaptive control structure is developed. Neural network identification (NNI) is used to obtain a dynamic model of a flexible joint robot to be controlled. Once NNI has closely matched the dynamic model of a flexible joint robot, neural network control (NNC) of tracking trajectory of a flexible joint robot is designed. Both tasks are completed using the backpropagation neural network. The method is shown to be a more simple, robust and adaptive learning control system than traditional control design for tracking control of a flexible joint single-link robot.","PeriodicalId":260036,"journal":{"name":"1993 (25th) Southeastern Symposium on System Theory","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Artificial neural network for identification and tracking control of a flexible joint single-link robot\",\"authors\":\"H. Kim, J. Parker\",\"doi\":\"10.1109/SSST.1993.522777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An artificial neural network for identification and tracking control of a nonlinear flexible joint robot with model reference adaptive control structure is developed. Neural network identification (NNI) is used to obtain a dynamic model of a flexible joint robot to be controlled. Once NNI has closely matched the dynamic model of a flexible joint robot, neural network control (NNC) of tracking trajectory of a flexible joint robot is designed. Both tasks are completed using the backpropagation neural network. The method is shown to be a more simple, robust and adaptive learning control system than traditional control design for tracking control of a flexible joint single-link robot.\",\"PeriodicalId\":260036,\"journal\":{\"name\":\"1993 (25th) Southeastern Symposium on System Theory\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 (25th) Southeastern Symposium on System Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.1993.522777\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 (25th) Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1993.522777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种具有模型参考自适应控制结构的非线性柔性关节机器人的神经网络辨识与跟踪控制方法。采用神经网络辨识(NNI)方法,建立了柔性关节机器人的动力学模型。当神经网络与柔性关节机器人的动力学模型紧密匹配后,设计了柔性关节机器人跟踪轨迹的神经网络控制。这两个任务都是使用反向传播神经网络完成的。对于柔性关节单连杆机器人的跟踪控制,该方法是一种比传统控制设计更简单、鲁棒和自适应的学习控制系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Artificial neural network for identification and tracking control of a flexible joint single-link robot
An artificial neural network for identification and tracking control of a nonlinear flexible joint robot with model reference adaptive control structure is developed. Neural network identification (NNI) is used to obtain a dynamic model of a flexible joint robot to be controlled. Once NNI has closely matched the dynamic model of a flexible joint robot, neural network control (NNC) of tracking trajectory of a flexible joint robot is designed. Both tasks are completed using the backpropagation neural network. The method is shown to be a more simple, robust and adaptive learning control system than traditional control design for tracking control of a flexible joint single-link robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信