芯片规模封装(CSP)焊点可靠性和建模

M. Amagai
{"title":"芯片规模封装(CSP)焊点可靠性和建模","authors":"M. Amagai","doi":"10.1109/RELPHY.1998.670560","DOIUrl":null,"url":null,"abstract":"A viscoplastic constitutive model was used to analyze the thermally induced plastic and creep deformation and low cycle fatigue behaviour of the solder joints in chip scale packages (CSP) mounted on PCBs. The time-dependent and time-independent viscoplastic strain rate and plastic hardening work factors of solder material were used in 2D plane strain finite element models. The viscoplastic strain rate data was fitted to the viscoplastic flow equation. The plastic hardening factors were considered in the evolution equation. Finite element models, incorporating the viscoplastic flow and evolution equations, were verified by temperature cycling tests on assembled CSPs. The effect of the cyclic frequency, dwell time, and temperature ramp rate on the response of the viscoplastic deformation was studied for a tapeless lead-on-chip (LOC) CSP and a flexible substrate CSP. The ramp rate significantly affects the equivalent stress range in solder joints, while a dwell time in excess of 10 minutes per half cycle does not result in increased strain range. The failure data from the experiments was fitted to the Weibull failure distribution and the Weibull parameters were extracted. After satisfactory correlation between experiment and model was observed, the effect of material properties and package design variables on the fatigue life of solder joints in CSPs was investigated, and the primary factors affecting solder fatigue life were subsequently presented. Furthermore, a simplified model was proposed to predict the solder fatigue life in CSPs.","PeriodicalId":196556,"journal":{"name":"1998 IEEE International Reliability Physics Symposium Proceedings. 36th Annual (Cat. No.98CH36173)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Chip scale package (CSP) solder joint reliability and modeling\",\"authors\":\"M. Amagai\",\"doi\":\"10.1109/RELPHY.1998.670560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A viscoplastic constitutive model was used to analyze the thermally induced plastic and creep deformation and low cycle fatigue behaviour of the solder joints in chip scale packages (CSP) mounted on PCBs. The time-dependent and time-independent viscoplastic strain rate and plastic hardening work factors of solder material were used in 2D plane strain finite element models. The viscoplastic strain rate data was fitted to the viscoplastic flow equation. The plastic hardening factors were considered in the evolution equation. Finite element models, incorporating the viscoplastic flow and evolution equations, were verified by temperature cycling tests on assembled CSPs. The effect of the cyclic frequency, dwell time, and temperature ramp rate on the response of the viscoplastic deformation was studied for a tapeless lead-on-chip (LOC) CSP and a flexible substrate CSP. The ramp rate significantly affects the equivalent stress range in solder joints, while a dwell time in excess of 10 minutes per half cycle does not result in increased strain range. The failure data from the experiments was fitted to the Weibull failure distribution and the Weibull parameters were extracted. After satisfactory correlation between experiment and model was observed, the effect of material properties and package design variables on the fatigue life of solder joints in CSPs was investigated, and the primary factors affecting solder fatigue life were subsequently presented. Furthermore, a simplified model was proposed to predict the solder fatigue life in CSPs.\",\"PeriodicalId\":196556,\"journal\":{\"name\":\"1998 IEEE International Reliability Physics Symposium Proceedings. 36th Annual (Cat. No.98CH36173)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 IEEE International Reliability Physics Symposium Proceedings. 36th Annual (Cat. No.98CH36173)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RELPHY.1998.670560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE International Reliability Physics Symposium Proceedings. 36th Annual (Cat. No.98CH36173)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.1998.670560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

采用粘塑性本构模型分析了印制电路板上芯片级封装(CSP)焊点的热致塑性、蠕变变形和低周疲劳行为。在二维平面应变有限元模型中采用了随时间变化和随时间变化的焊料粘塑性应变率和塑性硬化功系数。粘塑性应变率数据拟合到粘塑性流动方程中。在演化方程中考虑了塑性硬化因素。结合粘塑性流动方程和演化方程的有限元模型,通过装配csp的温度循环试验进行了验证。研究了循环频率、停留时间和温度斜坡率对无带片上铅(LOC) CSP和柔性衬底CSP粘塑性变形响应的影响。斜坡速率显著影响焊点的等效应力范围,而每半个周期停留时间超过10分钟不会导致应变范围的增加。将试验数据拟合到威布尔失效分布中,提取威布尔参数。在实验与模型得到满意的相关性后,研究了材料性能和封装设计变量对csp焊点疲劳寿命的影响,并给出了影响焊点疲劳寿命的主要因素。此外,提出了一种简化的csp焊料疲劳寿命预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chip scale package (CSP) solder joint reliability and modeling
A viscoplastic constitutive model was used to analyze the thermally induced plastic and creep deformation and low cycle fatigue behaviour of the solder joints in chip scale packages (CSP) mounted on PCBs. The time-dependent and time-independent viscoplastic strain rate and plastic hardening work factors of solder material were used in 2D plane strain finite element models. The viscoplastic strain rate data was fitted to the viscoplastic flow equation. The plastic hardening factors were considered in the evolution equation. Finite element models, incorporating the viscoplastic flow and evolution equations, were verified by temperature cycling tests on assembled CSPs. The effect of the cyclic frequency, dwell time, and temperature ramp rate on the response of the viscoplastic deformation was studied for a tapeless lead-on-chip (LOC) CSP and a flexible substrate CSP. The ramp rate significantly affects the equivalent stress range in solder joints, while a dwell time in excess of 10 minutes per half cycle does not result in increased strain range. The failure data from the experiments was fitted to the Weibull failure distribution and the Weibull parameters were extracted. After satisfactory correlation between experiment and model was observed, the effect of material properties and package design variables on the fatigue life of solder joints in CSPs was investigated, and the primary factors affecting solder fatigue life were subsequently presented. Furthermore, a simplified model was proposed to predict the solder fatigue life in CSPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信