通过视听同步检测深度伪造视频:正在研究中

Zhufeng Fan, Jinyu Zhan, Wei Jiang
{"title":"通过视听同步检测深度伪造视频:正在研究中","authors":"Zhufeng Fan, Jinyu Zhan, Wei Jiang","doi":"10.1145/3477244.3477615","DOIUrl":null,"url":null,"abstract":"Different to traditional works on frame-level features and temporal characteristics, we propose a deepfake video detection method based on visual-audio synchronism, which compares the audio stream and the visual stream by an improved siamese neural network. We combine the audio stream and visual stream as a 2-channel input and design a 2-branches network to achieve the visual-audio synchronism detection. Preliminary experiments demonstrate the efficiency of the proposed method, which can achieve the highest accuracy compared with other existing methods.","PeriodicalId":354206,"journal":{"name":"Proceedings of the 2021 International Conference on Embedded Software","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detecting deepfake videos by visual-audio synchronism: work-in-progress\",\"authors\":\"Zhufeng Fan, Jinyu Zhan, Wei Jiang\",\"doi\":\"10.1145/3477244.3477615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different to traditional works on frame-level features and temporal characteristics, we propose a deepfake video detection method based on visual-audio synchronism, which compares the audio stream and the visual stream by an improved siamese neural network. We combine the audio stream and visual stream as a 2-channel input and design a 2-branches network to achieve the visual-audio synchronism detection. Preliminary experiments demonstrate the efficiency of the proposed method, which can achieve the highest accuracy compared with other existing methods.\",\"PeriodicalId\":354206,\"journal\":{\"name\":\"Proceedings of the 2021 International Conference on Embedded Software\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 International Conference on Embedded Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3477244.3477615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 International Conference on Embedded Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3477244.3477615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与传统基于帧级特征和时间特征的检测方法不同,本文提出了一种基于视音频同步的深度假视频检测方法,通过改进的暹罗神经网络对音频流和视觉流进行比较。我们将音频流和视觉流作为一个双通道输入,并设计了一个双支路网络来实现视音频同步检测。初步实验证明了该方法的有效性,与其他现有方法相比,该方法可以达到最高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting deepfake videos by visual-audio synchronism: work-in-progress
Different to traditional works on frame-level features and temporal characteristics, we propose a deepfake video detection method based on visual-audio synchronism, which compares the audio stream and the visual stream by an improved siamese neural network. We combine the audio stream and visual stream as a 2-channel input and design a 2-branches network to achieve the visual-audio synchronism detection. Preliminary experiments demonstrate the efficiency of the proposed method, which can achieve the highest accuracy compared with other existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信